48. Approximate Solutions for Some Non-linear Volterra Integral Equations

By Shin-ichi NAKAGIRI and Haruo MURAKAMI Department of Applied Mathematics, Kobe University (Comm. by Kinjirô Kunugi, M. J. A., March 12, 1974)

In this short note we give generalized ε -approximate solutions $x(t; \xi, \varepsilon)$ of the following non-linear integral equations of Volterra-type

(P)
$$x(t) = f(t) + \int_0^t g(t, s, x(s)) ds.$$

Under very general assumptions on f(t) and g(t, s, x) similar to the Carathèodory-type, R. K. Miller and G. R. Sell [1] proved the local existence theorem by applying the fixed point theorem of Schauder-Tychonoff. We shall prove that their assumptions in [1] assure the existence of generalized ε -approximate solutions $x(t; \xi, \varepsilon)$ of (P) and give some interesting properties of $x(t; \xi, \varepsilon)$ which will play an essential role in our sequel paper [3]. As an easy application of our results, we can show another existence proof of a solution of (P).

Let |x| denote the Euclidean norm of a vector x of R^n . For each interval I containing O and each subset K of R^n , we define a space $\mathcal{C}(I;k)$ by the set of all continuous functions with domain I and range in K with the compact-open topology. Then $\mathcal{C}[0,\alpha]=\mathcal{C}([0,\alpha];R^n)$ is the Banach space of continuous functions on $[0,\alpha]$ with the norm of uniform convergence. We note that the space $\mathcal{C}[0,\alpha)=\mathcal{C}([0,\alpha);R^n)$ is not a Banach space but a Frèchet space. Denote by $\mathcal{L}^1[0,\alpha]$ the Banach space consisting of all Lebesgue measurable functions $x:[0,\alpha]\to R^n$ with finite norm $\int_{-\infty}^{\alpha} |x(t)| dt < \infty$.

We assume the following hypotheses which are somewhat weaker than those in [1].

- (H1) The function f is defined and continuous for all t in R^+ = $\{t \in R : t \ge 0\}$ with values in R^n .
- (H2) Let g(t, s, x) be a function defined on $R^+ \times R^+ \times R^n$ with values in R^n such that
- (i) for each fixed $(t, x) \in R^+ \times R^n$, g(t, s, x) is Lebesgue measurable in s and g(t, s, x) = 0 for s > t, and
- (ii) for each fixed $(t,s) \in R^+ \times R^+$ such that $s \leq t$, g(t,s,x) is continuous in x.
- (H3) For each real number l>0 and each compact subset K of \mathbb{R}^n , there exists a function $m(t,\cdot)\in\mathcal{L}^1[0,t]$ for each $t\in[0,l]$ such that