46. A Remark on Almost-Continuous Mappings

By Takashi Noiri

Miyakonojo Technical College

(Comm. by Kinjirô KUNUGI, M. J. A., March 12, 1974)

1. Introduction. In 1968, M. K. Singal and A. R. Singal [2] defined almost-continuous mappings as a generalization of continuous mappings. They obtained an extensive list of theorems about such a mapping, among them, the following two results were established:

Theorem A. Let $f_{\alpha}: X_{\alpha} \to X_{\alpha}^{*}$ be almost-continuous for each $\alpha \in I$ and let $f: \prod X_{\alpha} \to \prod X_{\alpha}^{*}$ be defined by setting $f((x_{\alpha})) = (f_{\alpha}(x_{\alpha}))$ for each point $(x_{\alpha}) \in \prod X_{\alpha}$. Then f is almost-continuous.

Theorem B. Let $h: X \to \Pi X_{\alpha}$ be almost-continuous. For each $\alpha \in I$, define $f_{\alpha}: X \to X_{\alpha}$ by setting $f_{\alpha}(x) = (h(x))_{\alpha}$. Then f_{α} is almost-continuous for all $\alpha \in I$.

The purpose of the present note is to show that the converses of the above two theorems are also true. As the present author has a question in the proof of Theorem B, we shall give the another proof.

2. Definitions and notations. Let A be a subset of a topological space X. By Cl A and Int A we shall denote the closure of A and the interior of A in X respectively. Moreover, A is said to be regularly open if A = Int Cl A, and regularly closed if A = Cl Int A. By a space we shall mean a topological space on which any separation axiom is not assumed. A mapping f of a space X into a space Y is said to be *almost-continuous* (simply *a.c.*) if for each point $x \in X$ and any neighborhood V of f(x) in Y, there exists a neighborhood U of x such that $f(U) \subset \text{Int Cl } V$. It is a characterization of *a.c.* mappings that the inverse image of every regularly open (resp. regularly closed) set is open (resp. closed) [2, Theorem 2.2]. A mapping is said to be *almost-open* if the image of every regularly open set is open.

3. Preliminaries. We begin by the following lemma.

Lemma 1. If a mapping $f: X \to Y$ is a.c. and almost-open, then the inverse image $f^{-1}(V)$ of each regularly open set V of Y is a regularly open set of X.

Proof. Let V be an arbitrary regularly open set of Y. Then, since f is a.c., $f^{-1}(V)$ is open and hence we obtain that $f^{-1}(V) \subset \text{Int Cl}$ $f^{-1}(V)$. In order to prove that $f^{-1}(V)$ is regularly open, it is sufficient to show that $f^{-1}(V) \supset \text{Int Cl} f^{-1}(V)$. Since f is a.c. and Cl V is regularly closed, $f^{-1}(\text{Cl } V)$ is closed and hence we have Int Cl $f^{-1}(V)$ $\subset \text{Cl } f^{-1}(V) \subset f^{-1}(\text{Cl } V)$. Since f is almost-open and Int Cl $f^{-1}(V)$ is