44. On a Parametrix in Some Weak Sense of a First Order Linear Partial Differential Operator with Two Independent Variables

By Toyohiro Akamatsu

Department of Mathematics, Osaka University

(Comm. by Kôsaku Yosida, M. J. A., March 12, 1974)

Introduction. Let $L=\partial/\partial t+i\phi(x)\sigma(t)\partial/\partial x$ be a first order linear partial differential operator with two independent variables in an open rectangle $\Omega = (a, b) \times (\alpha, \beta) \subset R_x^1 \times R_t^1$, $-\infty \leq a < b \leq +\infty$, $-\infty \leq \alpha < 0 < \beta$ $\leq +\infty$. In this paper we construct a parametrix of L in some weak sense and consider the regularity of the solution of the equation, (0.1) Lu = f in Ω , under the assumptions that

under the assumptions that

(0.2) $\phi \in C^{\infty}((a, b))$, and all derivatives of ϕ are bounded,

(0.3) $\sigma \in C^{\infty}((\alpha, \beta)), \ \sigma(t) \ge 0$ in (α, β) , and zeros of σ are all of finite order.

Equation (0.1) is locally solvable in Ω under these assumptions (cf. [1], [4]), but is not hypoelliptic in general (cf. [6]). In § 4 it will be seen how the regularity, with respect to t, of the solution u of (0.1) increases.

§ 1. Outline of the construction of a parametrix. We consider the solution of the form

(1.1)
$$u(x,t) = \frac{1}{2\pi i} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) v(x,\xi)d\xi.$$

Calculating formally, we have

(1.2)
$$Lu = \frac{\sigma(t)}{2\pi} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) (\xi v(x,\xi) + \phi(x)\partial/\partial x v(x,\xi)) d\xi.$$

Remark that if $\sigma(t) > 0$ in (α, β)

(1.3)
$$g(t) = \frac{\sigma(t)}{2\pi} \int \exp\left(i\xi \int_0^t \sigma(s)ds\right) \left(\int \exp\left(-i\xi \int_0^{t'} \sigma(s)ds\right) g(t')dt'\right) d\xi$$

for every $g \in C_0^{\infty}((\alpha, \beta))$. Then, we can expect that when the solution v of the equation

(1.4)
$$\xi v(x,\xi) + \phi(x)\partial/\partial x v(x,\xi) = \int \exp\left(-i\xi \int_0^{t'} \sigma(s)ds\right) f(x,t')dt'$$

is substituted in the right-hand side of (1.1) u(x, t) will give a solution of (0.1).

§ 2. Preliminary lemmas. We state two lemmas for the construction of a parametrix of L without proof.

Lemma 2.1. Let ϕ satisfy (0.2). We consider the equation