44. On a Parametrix in Some Weak Sense of a First Order Linear Partial Differential Operator with Two Independent Variables

By Toyohiro Akamatsu
Department of Mathematics, Osaka University
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1974)

Introduction. Let $L=\partial / \partial t+i \phi(x) \sigma(t) \partial / \partial x$ be a first order linear partial differential operator with two independent variables in an open rectangle $\Omega=(a, b) \times(\alpha, \beta) \subset R_{x}^{1} \times R_{t}^{1},-\infty \leqq a<b \leqq+\infty,-\infty \leqq \alpha<0<\beta$ $\leqq+\infty$. In this paper we construct a parametrix of L in some weak sense and consider the regularity of the solution of the equation, (0.1) $L u=f \quad$ in Ω, under the assumptions that
(0.2) $\quad \phi \in C^{\infty}((a, b))$, and all derivatives of ϕ are bounded, $\sigma \in C^{\infty}((\alpha, \beta)), \sigma(t) \geqq 0$ in (α, β), and zeros of σ are all of finite order.
Equation (0.1) is locally solvable in Ω under these assumptions (cf. [1], [4]), but is not hypoelliptic in general (cf. [6]). In §4 it will be seen how the regularity, with respect to t, of the solution u of (0.1) increases.
§ 1. Outline of the construction of a parametrix. We consider the solution of the form

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \pi i} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right) v(x, \xi) d \xi \tag{1.1}
\end{equation*}
$$

Calculating formally, we have

$$
\begin{equation*}
L u=\frac{\sigma(t)}{2 \pi} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right)(\xi v(x, \xi)+\phi(x) \partial / \partial x v(x, \xi)) d \xi . \tag{1.2}
\end{equation*}
$$

Remark that if $\sigma(t)>0$ in (α, β)

$$
\begin{equation*}
g(t)=\frac{\sigma(t)}{2 \pi} \int \exp \left(i \xi \int_{0}^{t} \sigma(s) d s\right)\left(\int \exp \left(-i \xi \int_{0}^{t^{\prime}} \sigma(s) d s\right) g\left(t^{\prime}\right) d t^{\prime}\right) d \xi \tag{1.3}
\end{equation*}
$$

for every $g \in C_{0}^{\infty}((\alpha, \beta))$. Then, we can expect that when the solution v of the equation

$$
\begin{equation*}
\xi v(x, \xi)+\phi(x) \partial / \partial x v(x, \xi)=\int \exp \left(-i \xi \int_{0}^{t^{\prime}} \sigma(s) d s\right) f\left(x, t^{\prime}\right) d t^{\prime} \tag{1.4}
\end{equation*}
$$

is substituted in the right-hand side of (1.1) $u(x, t)$ will give a solution of (0.1).
§ 2. Preliminary lemmas. We state two lemmas for the construction of a parametrix of L without proof.

Lemma 2.1. Let ϕ satisfy (0.2). We consider the equation

