71. A Note on Nonlinear Differential Equation in a Banach Space

By Shigeo Kato
Kitami Institute of Technology, Kitami, Hokkaido
(Comm. by Kinjirô Kunugi, m. J. A., April 18, 1974)

1. Let E be a Banach space with the dual space E^{*}. The norms in E and E^{*} are denoted by $\|\|$. We denote by $S(u, r)$ the closed sphere of center u with radius r.

It is our object in this note to give a sufficient condition for the existence of the unique solution to the Cauchy problem of the form

$$
\begin{equation*}
u^{\prime}(t)=f(t, u(t)), \quad u(0)=u_{0} \in E \tag{1.1}
\end{equation*}
$$ where f is a E-valued mapping defined on $[0, T] \times S\left(u_{0}, r\right)$.

We compare the differential equation (1.1) with the scalar equation (1.2)

$$
w^{\prime}(t)=g(t, w(t))
$$

where $g(t, w)$ is a function defined on $(0, a] \times[0, b]$ which is measurable in t for fixed w, and continuous monotone nondecreasing in w for fixed t. We say w is a solution of (1.2) on an interval I contained in [0, a] if w is absolutely continuous on I and if $w^{\prime}(t)=g(t, w(t))$ for a.e. $t \in I^{\circ}$, where I° is the set of all interior points of I.

We assume that g satisfies the following conditions:
There exists a function m defined on $(0, a)$ such that $g(t, w)$
(i) $\leqq m(t)$ for $(t, w) \in(0, a) \times[0, b]$ and for which m is Lebesgue integrable on (ε, a) for every $\varepsilon>0$.
For each $t_{0} \in(0, a], w \equiv 0$ is the only solution of the equation
(ii) (1.2) on $\left[0, t_{0}\right]$ satisfying the conditions that $w(0)=\left(D^{+} w\right)(0)=0$, where $D^{+} w$ denotes the right-sided derivative of w.
2. Let g be as in Section 1. Then we have the following lemmas.

Lemma 2.1. Let $\left\{w_{n}\right\}$ be a sequence of functions from $[0, a]$ to $[0, b]$ converging pointwise on $[0, a]$ to a function w_{0}. Let $M>0$ such that $\left|w_{n}(t)-w_{n}(s)\right| \leqq M|t-s|$ for $s, t \in[0, a]$ and $n \geqq 1$. Suppose further that for each $n \geqq 1$

$$
w_{n}^{\prime}(t) \leqq g\left(t, w_{n}(t)\right) \quad \text { for } t \in(0, a)
$$

such that $w_{n}^{\prime}(t)$ exists. Then w_{0} is a solution of (1.2) on $[0, a]$.
For a proof see [4].
Lemma 2.2. Let $M>0$ and let $\left\{w_{n}\right\}$ be a sequence of functions from $[0, a]$ to $[0, b]$ with the property that $\left|w_{n}(t)-w_{n}(s)\right| \leqq M|t-s|$ for all $s, t \in[0, a]$ and $n \geqq I$. Let $w=\sup _{n \geqq 1} w_{n}$, and suppose that $w_{n}^{\prime}(t)$ $\leqq g\left(t, w_{n}(t)\right)$ for $t \in(0, a)$ such that $w_{n}^{\prime}(t)$ exists. Then w is a solution of (1.2) on $[0, a]$.

