69. Closeness Spaces and Convergence Spaces

By Shouro Kasahara
Kobe University

(Comm. by Kinjirô Kunugi, m. J. A., April 18, 1974)

The purpose of this note is to show that every convergence structure ("Limitierung" of Fischer [2]) can be described by a family, called a closeness, of closure-like operations.

After stating several elementary properties of operations on the power set of a set, we shall introduce new notions "closeness" and "closeness space". Then some fundamental relations between closenesses and convergence structures will be established.

In what follows, the power set of a set X will be denoted by $\rho^{\rho}(X)$, and the value of a mapping $\alpha: \wp^{\rho}(X) \rightarrow \gamma^{\rho}(X)$ at $A \in \wp^{\circ}(X)$ by A^{α}. The complement of $A \in \rho^{\rho}(X)$ in X will be written A^{c}. For each $x \in X, \dot{x}$ denotes the filter on X consisting of all $A \in \rho^{\rho}(X)$ with $x \in A$.

1. Throughout this section X denotes an arbitrary set. Let α be a mapping of $\wp^{(}(X)$ into itself. For each $x \in X$, we denote by $\Phi_{a}(x)$ the set of all $A \in \rho^{\rho}(X)$ such that $x \notin A^{c \alpha}$. Evidently Φ_{α} is a mapping of X into $88 \rho(X)=8\left(\gamma^{\circ}(X)\right)$.

The following four lemmas may be easily verified, and we omit the proofs.

Lemma 1. Let α be a mapping of $\gamma^{\circ}(X)$ into itself, and let $x \in X$. Then the following statements hold:
(1) $\Phi_{\alpha}(x) \neq \emptyset$ if and only if x does not belong to $\cap\left\{A^{\alpha} \mid A \in \mathcal{P}(X)\right\}$.
(2) $\emptyset \notin \Phi_{\alpha}(x)$ if and only if $x \in X^{\alpha}$.

Lemma 2. Let α be a monotone mapping*) of $\rho(X)$ into itself. Then $x \in\{x\}^{\alpha}$ for every $x \in X$ if and only if $A \subset A^{\alpha}$ for every $A \in \mathcal{P}^{(}(X)$.

Lemma 3. Let α be a monotone mapping of $\gamma_{(X)}$ into itself, and let $A \in \wp^{\rho}(X)$. Then $x \in A^{\alpha}$ if and only if $S \cap A \neq \emptyset$ for every $S \in \Phi_{\alpha}(x)$.

Lemma 4. Let α, β be two monotone mappings of $\wp^{\rho}(X)$ into itself. Then $\Phi_{\alpha}(x) \subset \Phi_{\beta}(x)$ for every $x \in X$ if and only if $A^{\beta} \subset A^{\alpha}$ for every A $\in \mathcal{P}^{\rho}(X)$.

Let Ψ be a mapping of X into $88 \rho^{\circ}(X)$. For each $A \in \rho^{\circ}(X)$, we denote by $A^{\kappa(\mathscr{Y})}$ the set of all $x \in X$ for which we have $S \cap A \neq \emptyset$ for every S $\in \Psi(x)$. Obviously $\kappa(\Psi)$ is a monotone mapping of $\mathcal{P}^{(}(X)$ into itself. Conversely, as an immediate consequence of Lemma 3, we have the following

[^0]
[^0]: *) A mapping α of $\gamma^{(X)}$ into itself is called monotone if $A \subset B$ implies A^{α} $\subset B^{\alpha}$ for every $A, B \in \ell^{\rho}(X)$.

