66. Quantitative Properties of Analytic Varieties

Complex Analytic De Rham Cohomology. II

By Nobuo SASAKURA Tokyo Metropolitan University

(Comm. by Kunihiko KODAIRA, M. J. A., April 18, 1974)

This note is a continuation of [3]. The purpose of this note is to outline our recent results on certain quantitative properties of real analytic varieties. Details will appear elsewhere. The results will provide a topological key to the complex analytic De Rham cohomology theory. In what follows we are basically concerned with asymptotic and division properties of C^{∞} -differentiable differential forms with respect to given real analytic varieties. In this note we always mean by a variety a real analytic variety and we abbreviate the word C^{∞} differentiable as C^{∞} . The symbols L, N(Q, V), etc., have the same meanings as in [3]. For a fixed system of coordinates $(x) = (x_1, \dots, x_n)$ of \mathbb{R}^n , $D_K = \partial^{|K|} / \partial x^K$, where $K = (k_1, \dots, k_n)$, $x^K = x_1^{k_1} \cdots x_n^{k_n}$. Let \mathcal{D} be a domain in \mathbb{R}^n and W a closed subset of \mathcal{D} . A \mathbb{C}^{∞} -function f in $\mathcal{D} - W$ is said to be of polynomial growth with respect to W if, for each K, there exists a couple a_K such that $|D_K f(Q)| \leq a_{K_1} \cdot d(Q, W)^{-a_{K_2}}$. A C^{∞} form $\varphi = \sum_{J} \varphi_{J} dx^{J}$ in $\mathcal{D} - W$ will be said to be of polynomial growth with respect to W if each coefficient φ_J is of polynomial growth.

Let (U, V, P) be a datum composed of a domain U in \mathbb{R}^n , a variety V in U and a point P in V. This datum will be fixed throughout this note. First we state our results in terms of varieties in question and of coordinates (x).

n.1. C° -thickenings and their quantitative properties. Consider a proper subvariety $V' \ni P$ of V in addition to the datum (U, V, P). For a couple σ , let $N_{\sigma}(V:V')$ denote the neighbourhood of V-V' defined by $N_{\sigma}(V:V') = \bigcup_{q \in V-V'} N_{\sigma}(Q:V')$. A neighbourhood N of V-V' is called a C° -thickening of V-V', if $H^*(V-V':\mathbf{R}) \cong H^*(N:\mathbf{R})$. Let $\{N_j: j \in \mathbf{Z}\}$ be a direct system of C° -thickenings with respect to the inclusion relation satisfying the following conditions:

(1) For any N_j there exists a couple σ_j such that $N_j \supset N_{\sigma_j}(V:V')$.

(2) For an arbitrary σ , $N_j \subset N_\sigma(V:V')$ for a sufficiently large j.

For a neighbourhood N of V-V', $\Omega(N)$ denotes the ring of C^{∞} differential forms in N. Moreover, we understand by $\Omega(N:V')$ the subring of $\Omega(N)$ composed of those forms which are of polynomial growth with respect to V'. Given a direct system $\{N_j: j \in \mathbb{Z}\}$ of C^{∞} -