No. 4]

65. On an Invariant of Veronesean Rings

By Tadayuki MATSUOKA

Department of Mathematics, Ehime University

(Comm. by Kunihiko KODAIRA, M. J. A., April 18, 1974)

§ 1. Main result. Let K be a field and t_1, \dots, t_n indeterminates. Let m be a positive integer. In this paper we consider the ring $R_{n,m}$ generated, over K, by all the monomials $t_1^{p_1} \dots t_n^{p_n}$ such that $\sum_{i=1}^n p_i = m$. Let $S_{n,m}$ be the localization of $R_{n,m}$ at the maximal ideal generated by all $t_1^{p_1} \dots t_n^{p_n}$ in $R_{n,m}$. In [2] Gröbner showed that the local ring $S_{n,m}$ is a Macaulay ring of dimension n. In this paper this ring is called a Veronesean local ring.

In general, it is well known that in a Macaulay local ring the number of the irreducible components of an ideal generated by a system of parameters is an invariant of the ring. This invariant is called the type of the ring (cf. [4]). A Macaulay local ring is a Gorenstein ring if and only if the ring has type one.

The aim of this paper is to prove the following theorem.

Theorem. Let
$$S_{n,m}$$
 be a Veronesean local ring. Then
type $S_{n,m}=1$ if $n\equiv 0 \pmod{m}$

and

type
$$S_{n,m} = {n+m-r-1 \choose n-1}$$
 if $n \equiv r \pmod{m} \quad 0 < r < m$.

As a direct consequence of the theorem, we have the following

Corollary. A Veronesean local ring $S_{n,m}$ is a Gorenstein ring if and only if n=1 or $n\equiv 0 \pmod{m}$.

§ 2. Proof of theorem. For a non-negative integer s, we denote by P(s) the set of ordered n-tuples $(p) = (p_1, \dots, p_n)$ of non-negative integers p_i such that $\sum_{i=1}^n p_i = sm$. We also denote by $t^{(p)}$ the monomial $t_1^{p_1} \dots t_n^{p_n}$. With the same notation as in § 1, the ring $R_{n,m} = K[t^{(p)}|(p) \in P(1)]$. Let m be the maximal ideal generated by all $t^{(p)}$, $(p) \in P(1)$, and q the ideal generated by t_1^m, \dots, t_n^m . Then q is an m-primary ideal. Since the localization $S_{n,m}$ of $R_{n,m}$ at m is a Macaulay local ring of dimension n and since $\{t_1^m, \dots, t_n^m\}$ is a maximal regular sequence of $S_{n,m}$ (cf. [2]), the type of $S_{n,m}$ is given by the dimension of the K-vector space (q:m)/q (cf. [4]).

Before proving some lemmas we give preliminary remarks: A monomial $t^{(p)}$ is in $R_{n,m}$ if and only if (p) is in P(s) for some s. If (p)