65. On an Invariant of Veronesean Rings

By Tadayuki Matsuoka
Department of Mathematics, Ehime University

(Comm. by Kunihiko Kodaira, m. J. A., April 18, 1974)
§ 1. Main result. Let K be a field and t_{1}, \cdots, t_{n} indeterminates. Let m be a positive integer. In this paper we consider the ring $R_{n, m}$ generated, over K, by all the monomials $t_{1}^{p_{1}} \cdots t_{n}^{p_{n}}$ such that $\sum_{i=1}^{n} p_{i}=m$. Let $S_{n, m}$ be the localization of $R_{n, m}$ at the maximal ideal generated by all $t_{1}^{p_{1}} \cdots t_{n}^{p_{n}}$ in $R_{n, m}$. In [2] Gröbner showed that the local ring $S_{n, m}$ is a Macaulay ring of dimension n. In this paper this ring is called a Veronesean local ring.

In general, it is well known that in a Macaulay local ring the number of the irreducible components of an ideal generated by a system of parameters is an invariant of the ring. This invariant is called the type of the ring (cf. [4]). A Macaulay local ring is a Gorenstein ring if and only if the ring has type one.

The aim of this paper is to prove the following theorem.
Theorem. Let $S_{n, m}$ be a Veronesean local ring. Then

$$
\text { type } S_{n, m}=1 \quad \text { if } n \equiv 0(\bmod . m)
$$

and

$$
\text { type } S_{n, m}=\binom{n+m-r-1}{n-1} \quad \text { if } n \equiv r(\bmod . m) \quad 0<r<m .
$$

As a direct consequence of the theorem, we have the following
Corollary. A Veronesean local ring $S_{n, m}$ is a Gorenstein ring if and only if $n=1$ or $n \equiv 0(\bmod . m)$.
§ 2. Proof of theorem. For a non-negative integer s, we denote by $\mathrm{P}(s)$ the set of ordered n-tuples $(p)=\left(p_{1}, \cdots, p_{n}\right)$ of non-negative integers p_{i} such that $\sum_{i=1}^{n} p_{i}=s m$. We also denote by $t^{(p)}$ the monomial $t_{1}^{p_{1}} \ldots t_{n}^{p_{n}}$. With the same notation as in §1, the ring $R_{n, m}=K\left[t^{(p)} \mid(p)\right.$ $\in P(1)]$. Let \mathfrak{m} be the maximal ideal generated by all $t^{(p)},(p) \in \mathrm{P}(1)$, and \mathfrak{q} the ideal generated by $t_{1}^{m}, \cdots, t_{n}^{m}$. Then \mathfrak{q} is an \mathfrak{m}-primary ideal. Since the localization $S_{n, m}$ of $R_{n, m}$ at \mathfrak{m} is a Macaulay local ring of dimension n and since $\left\{t_{1}^{m}, \cdots, t_{n}^{m}\right\}$ is a maximal regular sequence of $S_{n, m}$ (cf. [2]), the type of $S_{n, m}$ is given by the dimension of the K-vector space ($\mathfrak{q}: \mathfrak{m}$)/q (cf. [4]).

Before proving some lemmas we give preliminary remarks: A monomial $t^{(p)}$ is in $R_{n, m}$ if and only if (p) is in $\mathrm{P}(s)$ for some s. If (p)

