64. Wave Equation with Wentzell's Boundary Condition and a Related Semigroup on the Boundary. II

By Tadashi UEN0

The College of General Education, University of Tokyo

(Comm. by Kôsaku Yosida, M. J. A., April 18, 1974)

1. In part I of this paper [1], we defined a closure \overline{A}_L of A with respect to Wentzell's boundary condition

$$Lu(x)=0, \qquad x\in\partial D,$$

and solved the wave equation

(1)
$$\frac{\partial^2}{\partial t^2} u = \overline{A}_L u, \quad u(t, \cdot) \to f, \quad \frac{\partial}{\partial t} u(t, \cdot) \to g, \quad \text{as } t \to 0,$$

by solving the equations of type

(2) $\alpha u - \overline{A}_L u = v$, for $v \in \mathcal{H}$, and using the scheme in 2 of [1].

Here, we consider L as an operator which maps a function u on \overline{D} to a function Lu on ∂D , and define a closure \overline{L}_A of L with respect to the domain condition

(3) $Au(x)=0, x \in D,$ just as we defined \overline{A}_L . Since each function in $\mathcal{D}(\overline{L}_A)$ can be proved to satisfy (3), it is written as $H\varphi(x)=\int_{\partial D}H(x,dy)\varphi(y)$ by the boundary value φ and the harmonic measure $H(x,\cdot)$ with respect to the domain D and point $x.^{10}$ Thus, we define \overline{LH} by $\overline{LH}\varphi=\overline{L}_AH\varphi$ on $\{\varphi\in\mathcal{H}_{\partial}|H\varphi\in D(\overline{L}_A)\}$, where \mathcal{H}_{∂} is the Hilbert space of all measurable functions on ∂D such that $\|\varphi\|_{\partial}=\langle\varphi,\varphi\rangle^{\frac{1}{2}}<\infty$. Then, we can solve

(4)
$$\frac{\partial^2}{\partial t^2} \varphi = \overline{LH} \varphi, \quad \varphi(t, \cdot) \to \psi, \quad \frac{\partial}{\partial t} \varphi(t, \cdot) \to \eta, \quad \text{as } t \to 0,$$

by using the scheme in 2 of [1] and solving the equations of type

(5)
$$\lambda[u]_{\partial} - \bar{L}_{A} u = \varphi, \quad \text{for } \varphi \in \mathcal{H}_{\partial},$$

where $[u]_{\partial}$ is the restriction of u to the boundary ∂D .

It is expected that the mapping L and the equation (4) have some intuitive meanings, closely related with (1). Some comments on this point will be added in comparison with equation

(6)
$$\frac{\partial}{\partial t}\varphi = \overline{LH}\varphi, \quad \varphi(t, \cdot) \to \psi, \quad \text{as } t \to 0,$$

¹⁾ The harmonic measure corresponds to $A = \Delta$. For a general A, a measure with similar properties exists, and it is sometimes called the *hitting measure*. In fact, this is the probability distribution of the first hit to the boundary of the diffusion particle corresponding to A and started at point x.