58. Asymptotic Distribution $\bmod m$ and Independence of Sequences of Integers. II

By Lauwerens Kuipers*) and Harald Niederreiter**)

(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

This is the continuation of the paper on the preceding pages. For notation and terminology, we refer to the first part. The numbering of theorems, definitions, and equations is continued from the first part.

We remark that if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$, then $\left(a_{n}\right)$ and $\left(a_{n}+b_{n}\right)$ need not be independent $\bmod m$. For, otherwise, since $\left(a_{n}\right)$ and (0) are independent $\bmod m$ by Theorem 4, $\left(a_{n}\right)$ and $\left(a_{n}\right)$ would be independent $\bmod m$, which happens only under special circumstances (see Theorem 3). However, the following result can be shown.

Theorem 7. Let $\left(a_{n}\right)$ and $\left(b_{n}\right)$ be independent $\bmod m$ with $\left(b_{n}\right)$ $u . d . \bmod m$. Let $h, k, l \in \boldsymbol{Z}$ be such that $\mathrm{g} . \mathrm{c} . \mathrm{d} .(l, m)$ divides k. Then the sequences $\left(h a_{n}\right), n=1,2, \cdots$, and $\left(k a_{n}+l b_{n}\right), n=1,2, \cdots$, are independent $\bmod m$.

Proof. Let $q \in \boldsymbol{Z}$ be a solution of the congruence $l x \equiv k(\bmod m)$. By a remark following Theorem 6, the sequence ($q a_{n}+b_{n}$), $n=1,2, \cdots$, is u.d. $\bmod m$. For $r, s \in \boldsymbol{Z}$ we have

$$
\begin{aligned}
\left\|A\left(a_{n} \equiv r, q \alpha_{n}+b_{n} \equiv s\right)\right\| & =\left\|A\left(a_{n} \equiv r, b_{n} \equiv s-q r\right)\right\| \\
& =\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(b_{n} \equiv s-q r\right)\right\|=\left\|A\left(a_{n} \equiv r\right)\right\| \cdot \frac{1}{m} \\
& =\left\|A\left(a_{n} \equiv r\right)\right\| \cdot\left\|A\left(q a_{n}+b_{n} \equiv s\right)\right\|
\end{aligned}
$$

and therefore the sequences $\left(a_{n}\right)$ and $\left(q a_{n}+b_{n}\right)$ are independent $\bmod m$. Thus, by Theorem 2, the sequences $\left(h a_{n}\right)$ and $\left(l q a_{n}+l b_{n}\right)$ are independent $\bmod m$. But the second sequence is $\bmod m$ identical with $\left(k a_{n}\right.$ $+l b_{n}$), and so we are done.

Remark. Theorem 7 has the following partial converse. If $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have α and β as their a.d.f. $\bmod m$, respectively, if $\alpha(j)>0$ and $\beta(j)>0$ for all j, and if $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are independent $\bmod m$, then the independence $\bmod m$ of $\left(a_{n}\right)$ and $\left(k a_{n}+l b_{n}\right)$ implies that g.c.d. (l, m) divides k. For if k were not divisible by g.c.d. (l, m), then we would have

$$
\begin{aligned}
\left\|A\left(a_{n} \equiv 0\right)\right\| \cdot\left\|A\left(k a_{n}+l b_{n} \equiv k\right)\right\| & =\left\|A\left(a_{n} \equiv 0, k a_{n}+l b_{n} \equiv k\right)\right\| \\
& =\left\|A\left(a_{n} \equiv 0, l b_{n} \equiv k\right)\right\|=0 .
\end{aligned}
$$

[^0]
[^0]: *) Department of Mathematics, Southern Illinois University, Carbondale, Illinois, U. S. A.
 **) The Institute for Advanced Study, Princeton, New Jersey, U. S. A. The research of the second author was supported by NSF grant GP-36418X1.

