57. Asymptotic Distribution mod m and Independence of Sequences of Integers. I

By Lauwerens KUIPERS*' and Harald NIEDERREITER**'

(Comm. by Kenjiro SHODA, M. J. A., April 18, 1974)

Let $m \ge 2$ be a fixed modulus. Let (a_n) , $n=1,2,\cdots$, be a given sequence of integers. For integers $N \ge 1$ and j, let $A(N; j, a_n)$ be the number of $n, 1 \le n \le N$, with $a_n \equiv j \pmod{m}$. If

$$\alpha(j) = \lim_{N \to \infty} A(N; j, a_n) / N$$

exists for each j, then (a_n) is said to have α as its asymptotic distribution function mod m (abbreviated a.d.f. mod m). We denote $\alpha(j)$ also by $||A(a_n \equiv j)||$. Of course, it suffices to restrict j to a complete residue system mod m. If $\alpha(j)=1/m$ for $0 \le j \le m$, then (a_n) is uniformly distributed mod m (abbreviated u.d. mod m) in the sense of Niven [4]. The numbers in brackets refer to the bibliography at the end of the second part of this paper.

If (b_n) is another sequence of integers, then for $N \ge 1$ and $j, k \in \mathbb{Z}$ we define $A(N; j, a_n; k, b_n)$ as the number of $n, 1 \le n \le N$, such that simultaneously $a_n \equiv j \pmod{m}$ and $b_n \equiv k \pmod{m}$. We write $(1) \qquad ||A(a_n \equiv j, b_n \equiv k)|| = \lim_{N \to \infty} A(N; j, a_n; k, b_n)/N$

in case the limit exists. We note that if the limits (1) exist for all j, $k=0, 1, \dots, m-1$, then both (a_n) and (b_n) have an a.d.f. mod m. The following notion was introduced by Kuipers and Shiue [2].

Definition 1. The sequences (a_n) and (b_n) are called independent mod *m* if for all $j, k=0, 1, \dots, m-1$ the limits $||A(a_n \equiv j, b_n \equiv k)||$ exist and we have

 $||A(a_n \equiv j, b_n \equiv k)|| = ||(A(a_n \equiv j))|| \cdot ||A(b_n \equiv k)||.$

Example 1. Let (c_n) be a sequence of integers that is u.d. mod m^2 . Then writing $c_n \equiv a_n + mb_n \pmod{m^2}$, where $0 \leq a_n < m$ and $0 \leq b_n < m$, we obtain two sequences (a_n) and (b_n) that are independent mod m and u.d. mod m. See [2] and [1, Ch. 5, Example 1.5].

Example 2. Let α_1, α_2 be two real numbers such that $1, \alpha_1, \alpha_2$ are linearly independent over the rationals; or, more generally, let α_1, α_2 be two real numbers satisfying the condition of Theorem A in [3]. Then, according to this theorem, the sequence $(([n\alpha_1], [n\alpha_2])), n=1, 2, \cdots$, of lattice points is u.d. in Z^2 (here [x] denotes the integral part of

^{*)} Department of Mathematics, Southern Illinois University, Carbondale, Illinois, U. S. A.

^{**&#}x27; The Institute for Advanced Study, Princeton, New Jersey, U. S. A. The research of the second author was supported by NSF grant GP-36418X1.