57. Asymptotic Distribution $\bmod m$ and Independence of Sequences of Integers. I

By Lauwerens Kuipers*) and Harald Niederreiter**)

(Comm. by Kenjiro Shoda, m. J. A., April 18, 1974)

Let $m \geq 2$ be a fixed modulus. Let $\left(a_{n}\right), n=1,2, \cdots$, be a given sequence of integers. For integers $N \geq 1$ and j, let $A\left(N ; j, a_{n}\right)$ be the number of $n, 1 \leq n \leq N$, with $a_{n} \equiv j(\bmod m)$. If

$$
\alpha(j)=\lim _{N \rightarrow \infty} A\left(N ; j, a_{n}\right) / N
$$

exists for each j, then $\left(a_{n}\right)$ is said to have α as its asymptotic distribution function $\bmod m($ abbreviated a.d.f. $\bmod m)$. We denote $\alpha(j)$ also by $\left\|A\left(a_{n} \equiv j\right)\right\|$. Of course, it suffices to restrict j to a complete residue system $\bmod m$. If $\alpha(j)=1 / m$ for $0 \leq j<m$, then $\left(a_{n}\right)$ is uniformly distributed $\bmod m($ abbreviated u.d. $\bmod m)$ in the sense of Niven [4]. The numbers in brackets refer to the bibliography at the end of the second part of this paper.

If (b_{n}) is another sequence of integers, then for $N \geq 1$ and $j, k \in \boldsymbol{Z}$ we define $A\left(N ; j, a_{n} ; k, b_{n}\right)$ as the number of $n, 1 \leq n \leq N$, such that simultaneously $a_{n} \equiv j(\bmod m)$ and $b_{n} \equiv k(\bmod m)$. We write (1) $\quad\left\|A\left(a_{n} \equiv j, b_{n} \equiv k\right)\right\|=\lim _{N \rightarrow \infty} A\left(N ; j, a_{n} ; k, b_{n}\right) / N$ in case the limit exists. We note that if the limits (1) exist for all j, $k=0,1, \cdots, m-1$, then both $\left(a_{n}\right)$ and $\left(b_{n}\right)$ have an a.d.f. $\bmod m$. The following notion was introduced by Kuipers and Shiue [2].

Definition 1. The sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ are called independent $\bmod m$ if for all $j, k=0,1, \cdots, m-1$ the limits $\left\|A\left(a_{n} \equiv j, b_{n} \equiv k\right)\right\|$ exist and we have

$$
\left\|A\left(a_{n} \equiv j, b_{n} \equiv k\right)\right\|=\|\left(A\left(a_{n} \equiv j\right)\|\cdot\| A\left(b_{n} \equiv k\right) \| .\right.
$$

Example 1. Let $\left(c_{n}\right)$ be a sequence of integers that is u.d. $\bmod m^{2}$. Then writing $c_{n} \equiv a_{n}+m b_{n}\left(\bmod m^{2}\right)$, where $0 \leq a_{n}<m$ and $0 \leq b_{n}<m$, we obtain two sequences $\left(a_{n}\right)$ and $\left(b_{n}\right)$ that are independent $\bmod m$ and u.d. $\bmod m$. See [2] and [1, Ch. 5, Example 1.5].

Example 2. Let α_{1}, α_{2} be two real numbers such that $1, \alpha_{1}, \alpha_{2}$ are linearly independent over the rationals; or, more generally, let α_{1}, α_{2} be two real numbers satisfying the condition of Theorem A in [3]. Then, according to this theorem, the sequence (([n $\left.\left.\left.\alpha_{1}\right],\left[n \alpha_{2}\right]\right)\right), n=1,2$, \cdots, of lattice points is u.d. in \boldsymbol{Z}^{2} (here $[x]$ denotes the integral part of

[^0]
[^0]: *) Department of Mathematics, Southern Illinois University, Carbondale, Illinois, U. S. A.
 **) The Institute for Advanced Study, Princeton, New Jersey, U. S. A. The research of the second author was supported by NSF grant GP-36418X1.

