No. 4]

56. A Remark of a Neukirch's Conjecture

By Keiichi KOMATSU

Department of Mathematics, Tokyo Institute of Technology

(Comm. by Kenjiro Shoda, M. J. A., April 18, 1974)

Introduction. Let Q be the rational number field, \overline{Q} the algebraic closure of Q and G_Q the Galois group of \overline{Q} over Q with Krull topology. In [4] Neukirch gave a conjecture to the effect that any topological automorphism of G_Q is inner. In this paper we shall show the following affirmative datum:

Theorem. Let α be a topological automorphism of G_q . Then for any element τ in G_q , there exists an element σ_{τ} in G_q such that $\alpha(\tau) = \sigma_{\tau}^{-1} \tau \sigma_{\tau}$.

Some properties of decomposition groups of non-archimedean valuations, which we shall use to get the above theorem, also shall be stated with a result that the center of G_{q} is trivial.

§ 1. The center of G_k . Let Q be the rational number field and \overline{Q} the algebraic closure of Q. For any subfield K of \overline{Q} , let G_K be the topological Galois group of \overline{Q} over K. In this paper field means a subfield of \overline{Q} .

Definition 1. Let K be a subfield of \overline{Q} and v a non-archimedean valuation of K. K is said to be henselian with respect to v if an extension of v to \overline{Q} is unique.

Lemma 1 (cf. [1]). For a proper subfield K of \overline{Q} , let v_1 and v_2 be non-archimedean valuations of K. If K is henselian with respect to v_1 and v_2 , then v_1 and v_2 are equivalent as valuation.

Let k be a subfield of \overline{Q} and \overline{v} a non-archimedean valuation of \overline{Q} . We denote by $D_k(\overline{v})$ the decomposition group of \overline{v} in G_k and by $N_k(D_k(\overline{v}))$ the normalizer of $D_k(\overline{v})$ in G_k . Since $D_k(\overline{v})$ is a closed subgroup of G_k , there exists the subfield K of \overline{Q} such that $G_K = D_k(\overline{v})$. Then K is henselian with respect to the restriction $\overline{v}|_K$ of \overline{v} to K. We denote by x^v the image of an element x in \overline{Q} by an automorphism σ in G_q and by \overline{v}^v the valuation of \overline{Q} such that $\overline{v}^o(x) = \overline{v}(x^o)$ for any element x in \overline{Q} . Then we have

 $(1) D_k(\overline{v}^{\sigma}) = \sigma D_k(\overline{v}) \sigma^{-1}$

for any element σ in G_k .

Lemma 2. If k is a finite extension of Q, then we have $D_k(\overline{v}) = N_k(D_k(\overline{v}))$ for any non-archimedean valuation \overline{v} of \overline{Q} .

Proof. It is clear that $D_k(\overline{v})$ is contained in $N_k(D_k(\overline{v}))$. So it is sufficient to show that $\overline{v}^{\sigma} = \overline{v}$ for any element σ in $N_k(D_k(\overline{v}))$. Let σ be