80. The Completion by Cuts of an M-symmetric Lattice

By Shûichirô Maeda and Yoshinobu Kato
Ehime University, Matsuyama
(Comm. by Kinjirô Kunugi, M. J. A., June 11, 1974)

It is well known that the completion by cuts of a modular lattice is not necessarily modular ([1], p. 127, Example 9). But the following question was open ([2], p. 55, Problem 4): Is the completion by cuts of an M-symmetric lattice M-symmetric? In this paper we will give a negative answer to this question by constructing an atomistic Msymmetric lattice whose completion by cuts is not M-symmetric.

Let E be an infinite set and let A, B, C, D be mutually disjoint subsets of E which are all infinite. We take a sequence of subsets $\left\{C_{n}\right\}$ of C which satisfies the following two conditions:

$$
\begin{equation*}
C=C_{0} \supset C_{1} \supset C_{2} \supset \cdots \text { and } \bigcap_{n=1}^{\infty} C_{n}=\phi \text { (empty) } \tag{1}
\end{equation*}
$$

(2) For every $n=1,2, \cdots$, the set $C_{n-1}-C_{n}$ is infinite.

Moreover, we take a sequence of subsets $\left\{D_{n}\right\}$ of D satisfying the same conditions, and we put $A_{n}=A \cup C_{n}$ and $B_{n}=B \cup D_{n}$. We denote by F the family of all finite subsets of E, and we put

$$
L=\left\{E, A_{n} \cup F, B_{n} \cup F, F ; 1 \leqq n<\infty, F \in F\right\} .
$$

Proposition 1. L forms an atomistic M-symmetric lattice, ordered by set-inclusion.

Proof. It is evident that if $X, Y \in L$ then their intersection $X \cap Y$ belongs to L. Hence, the meet $X \wedge Y$ exists and equals to $X \cap Y$. If $X=A_{m} \cup F_{1}$ and $Y=B_{n} \cup F_{2}\left(F_{1}, F_{2} \in F\right)$, then since E is the only upper bound of $\{X, Y\}$ in L, the join $X \vee Y$ is E. Hence, $X \vee Y$ exists for every $X, Y \in L$ and it holds that
(3) $X \vee Y=\left\{\begin{array}{l}X \cup Y \quad \text { if } X \cup Y \in L \\ E \quad \text { if } X \cup Y \notin L .\end{array}\right.$

Thus, L is a lattice and evidently it is atomistic. Next, we shall show that
(4) $(X, Y) M$ in L if and only if $X \cup Y \in L$.
$((X, Y) M$ means that the pair (X, Y) is modular. See [2], (1.1).) If $X \neq E, Y \neq E$ and $X \cup Y \in L$, then for any $X_{1}, Y_{1} \in L$ with $X_{1} \leqq X$ and $Y_{1} \leqq Y$ we have $X_{1} \cup Y_{1} \in L$. Hence, if $Y_{1} \leqq Y$ in L, then

$$
\left(Y_{1} \vee X\right) \wedge Y=\left(Y_{1} \cup X\right) \cap Y=Y_{1} \cup(X \cap Y)=Y_{1} \vee(X \wedge Y)
$$

Hence, $(X, Y) M$. To prove the converse, it suffices to show that if $X=A_{m} \cup F_{1}, Y=B_{n} \cup F_{2}$ then the pairs (X, Y) and (Y, X) are not modular. Put $Y_{1}=B_{n+1}$. Then $Y_{1} \leqq Y$, and since $Y_{1} \vee X=E$ by (3) we

