79. Fourier Transform of Banach Algebra Valued Functions on Group

By Reri TAKAMATSU

Department of Mathematics, Sophia University

(Comm. by Kôsaku Yosida, M. J. A., June 11, 1974)

1. Introduction and preliminaries. Let G be a locally compact group with unit element e, and A be a complex Banach algebra with unit element 1.

Through this paper, we let Haar measure of non abelian group be left invariant, and we let $\int dx$, $\int dy$, \cdots , denote integration with respect to Haar measure and m(E) the Haar measure of a set E.

We denote the Fourier transform \hat{f} of $f \in L^1(G)$, when G is abelian, by

$$\hat{f}(\gamma) = \int_{G} f(x)(-x, \gamma) dx$$
 $(\gamma \in \Gamma; \text{ the dual group of } G).$

A well known theorem states that a functional h defined on $L^1(G)$ is a non-zero complex homomorphism if and only if

$$h(f) = \hat{f}(\gamma)$$
 $(f \in L^1(G))$ for some $\gamma \in \Gamma$.

In this paper, we give an analogue of this theorem by replacing the functions $f \in L^1(G)$ with A-valued functions on G. This is also a preliminary step to get formally a unified view about the group algebra and the representation of groups by linear transformations on a vector space, which form a Banach algebra.¹⁾

Let $C_0(G \rightarrow A)$ denote the set of all A-valued continuous functions on G with compact support, and $L^1(G \rightarrow A)$ denote the completion of $C_0(G \rightarrow A)$ with respect to the norm $||| \cdot |||$, defined by

$$|||f||| = \int_{a} ||f(x)|| dx.$$

We say an A-valued function f on G is a measurable step function on G if f(x) is of the form

$$f(x) = \sum_{\nu=1}^{n} a_{\nu} \chi_{E_{\nu}}(x),$$

where $a_{\nu} \in A$ and E_{ν} are measurable sets (with respect to Haar measure) with compact closure, and $\chi_{E_{\nu}}$ are characteristic functions of E_{ν} .

The proofs of Proposition 1 and 2 will be given easily.

Proposition 1. The set of all measurable step functions is dense in $L^1(G \rightarrow A)$.

¹⁾ L. Loomis §31 and §32.