78. On K. Yosida's Class (A) of Meromorphic Functions

By Shinji YAMASHITA Tokyo Metropolitan University

(Comm. by Kôsaku Yosida, M. J. A., June 11, 1974)

1. Introduction. The class (A) in K. Yosida's sense [5] consists of all functions f meromorphic in the plane $C: |z| < +\infty$ such that the family $\{f_a\}, \alpha \in C$, of functions $f_a(z) = f(z+\alpha), z \in C$, is normal in the sense of P. Montel in C. We set $k(f) = \sup_{z \in C} f^*(z)$ for $f \in (A)$, where $f^*(z) = |f'(z)|/(1+|f(z)|^2)$; we know that $k(f) < +\infty$ [5, Theorem 1]. Plainly, k(f) > 0 if and only if f is non-constant. Given a function fmeromorphic in C and a point $z \in C$, let u(z) = u(z, f) be the supremum of r > 0 such that f is univalent in the disk $D(z, r) = \{w \in C; |w-z| < r\}$; if such an r does not exist, we set u(z) = u(z, f) = 0. Then u(z) = 0 if and only if $f^*(z) = 0$. Except for the case that f is linear, $u(z) < +\infty$ at each $z \in C$. Furthermore, a non-linear f is univalent in D(z, u(z))and the function u is continuous in C (Lemma). Here and elsewhere a meromorphic function f is called non-linear if f is non-constant and not linear. We begin with

Theorem 1. Given a non-linear f of class (A), we have at each $z \in C$,

(1)
$$f^*(z) \leq (32/\pi^2)k(f)^2u(z, f).$$

Of course, the estimate (1) has the good meaning if $u(z, f) < \pi^2/\{32k(f)\}$. As an application of Theorem 1 we know that $u(z_n, f) \rightarrow 0$ implies $f^*(z_n) \rightarrow 0$ for each sequence of points $\{z_n\} \subset C$ converging to a point of C or else to the point at infinity. However, the converse is not valid; the exponential function $E(z) = e^z$ belongs to (A) with $u(z, E) = \pi$ at each $z \in C$ but $E^*(n) \rightarrow 0$ as $n \rightarrow +\infty$, n being positive integers.

Our next result concerns the derived function.

Theorem 2. Given a non-linear f of class (A), we have at each $z \in C$,

(2) $f'^*(z) \leq 2[\min\{k(f)^{-1}, u(z, f)\}]^{-1} + 1,$ where $f'^*(z) = |f''(z)|/(1 + |f'(z)|^2).$

The function $E \in (A)$ has the property that $E' \in (A)$, which suggests the following application of Theorem 2. We have $f' \in (A)$ if $f \in (A)$ and if $\inf_{|z|>R} u(z, f)>0$ for a certain constant R>0. Indeed, f'^* is bounded in |z|>R by (2), while f'^* is bounded in $|z|\leq 2R$ because f'^* is continuous in C, whence f'^* is bounded in C. Therefore $f' \in (A)$ by