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Introduction. The Hodge spectral sequence for an isolated
singularity of (complex) analytic space is defined as follows. Note
first that, given a complex manifold Z, the bigrading of differential
forms of Z together with the operators 3 and defines a double com-
plex. The Hodge structure (E,q(Z), d) of Z is the spectral sequence
of this double complex so chosen that E,q(Z)=Hq(Z,) where
denotes the sheaf of holomorphic p-forms on Z. Let now (X, x) denote
the situation where x is an isolated singular point of an analytic space
X. For sufficiently small neighborhood U of x, (E,q(U\x), d) are
well defined and form a direct system with the restriction maps. Set

E,q(X, x)= lim E,q(U\x).

The map d" E,q(X,x)--.E/,q-/(X,x) is naturally induced.
(E,q(X,x), d) thus obtained is the Hodge spectral sequence of the
isolated singularity (X, x). If X is n-dimensional, then E,(X, x)--0
by Malgrange [3]. By Andreotti-Grauert [1] E,q(X,x) are finite-
dimensional (over C) if 1__< q__< n-- 2.

The main result is the following
Theorem 1. Let n>=3 and suppose (X,x) is a hypersurface

singularity, that is, there is a holomorphic function f in a domain Y
of C+’(Zo,...,z) such that X={zeY; f(z)=f(x)}, and such that
f(z)/3zi=O (O<=i<=n) if and only if z=x. Let E,q(X,x) be denoted
for short by E,q. Then the following conclusions are valid.

) E,q--0 if q:/=0, qCn-1, p+qCn-1, p+q=/=n.

(ii) There are canonical isomorphisms"
E,n-_E,-3_
Ei,-_E[,-3_ _E-,I

(ii)’ dimE-,-----dimE-, for 2<=q<__n-2
(iii) E, are all finite-dimensional.
(iv) E,=O for l<=p<__n--2.
(iv)’ E,-I--O for 2<__p<=n--1.
( v ) If [2 is the multiplicity of the hypersurface singularity (X, x)

in the sense of Milnor [4], then

( ) z--dim E-’+ dim E’--dim E-’
dim E, -+ dim E --dim E,-.


