108. On Common Fixed Point Theorems of Mappings

By Kiyoshi Iséki

(Comm. by Kinjirô Kunugi, m. J. A., Sept. 12, 1974)

In his recent book [1], V. I. Istrǎtesçu proved some common fixed point theorems about contraction mappings. In this paper, we shall generalize his results.

Let (X, ρ) be a complete metric space, and $T_{k}(k=1,2, \cdots, n)$ a family of mappings of X into itself.

Theorem 1. If $T_{k}(k=1,2, \cdots, n)$ satisfies

1) $T_{k} T_{l}=T_{l} T_{k}(k, l=1,2, \cdots, n)$,
2) There is a system of positive integers $m_{1}, m_{2}, \cdots, m_{n}$ such that $\rho\left(T_{1}^{m_{1}} T_{2}^{m_{2}} \cdots T_{n}^{m_{n}} x, T_{1}^{m_{1}} T_{2}^{m_{2}} \ldots T_{n}^{m_{n}} y\right)$

$$
\begin{align*}
\leq & \alpha \rho(x, y)+\beta\left[\rho\left(x, T_{1}^{m_{1}} T_{2}^{m_{2}} \ldots T_{n}^{m_{n}} x\right)\right. \\
& \left.+\rho\left(y, T_{1}^{m_{1}} T_{2}^{m_{2}} \cdots T_{n}^{m_{n}} y\right)\right]+\gamma\left[\rho\left(x, T_{1}^{m_{1}} T_{2}^{m_{2}} \ldots T_{n}^{m_{n}} y\right)\right. \tag{1}\\
& \left.+\rho\left(y, T_{1}^{m_{1}} T_{2}^{m_{2}} \cdots T_{n}^{m_{n}} x\right)\right]
\end{align*}
$$

for every x, y of X, where α, β, γ are non-negative and $\alpha+2 \beta+2 \gamma<1$, then $T_{k}(k=1,2 \cdots, n)$ have a unique common fixed point.

Proof. To prove Theorem, we use I. Rus theorem [2]. Let U $=T_{1}^{m_{1}} T_{2}^{m_{2}} \ldots T_{n}^{m_{n}}$, then by (1), we have

$$
\begin{aligned}
\rho(U x, U y) \leq & \alpha(x, y)+\beta[\rho(x, U x)+\rho(y, U y)] \\
& +\gamma[\rho(x, U y)+\rho(y, U x)]
\end{aligned}
$$

for all x, y of X. Hence by I. Rus theorem, U has a unique fixed point ξ in X. Therefore $U \xi=\xi$, then we have

By the commutativity of $\left\{T_{k}\right\}$, (2) implies

$$
\begin{equation*}
U\left(T_{i} \xi\right)=T_{i} \xi \tag{2}
\end{equation*}
$$

Since U has a unique fixed point ξ, we obtain $T_{i} \xi=\xi(i=1,2, \cdots, n)$. Hence ξ is a common fixed point of the family $\left\{T_{k}\right\}$.

Let ξ, η be common fixed points of $\left\{T_{k}\right\}$, then by (1), we have

$$
\begin{aligned}
\rho(\xi, \eta)= & \rho(U \xi, U \eta) \leq \alpha \rho(\xi, \eta) \\
& +\beta[\rho(\xi, U \xi)+\rho(\eta, U \eta)]+\gamma[\rho(\xi, U \eta)+\rho(\eta, U \xi)]
\end{aligned}
$$

which implies

$$
\rho(\xi, \eta) \leq \alpha \rho(\xi, \eta)+2 \gamma \rho(\xi, \eta) .
$$

From $\alpha+2 \gamma<1$, we have $\rho(\xi, \eta)=0$, i.e. $\xi=\eta$. We have the uniqueness, and we complete the proof.

Theorem 2. If $\left\{T_{k}\right\}$ satisfies the conditions:

1) $T_{1} T_{2} \cdots T_{n}$ commutes with every T_{i},
2) for every x, y of X,
