105. The Hurewicz Isomorphism Theorem on Homotopy and Homology Pro-Groups

By Kiiti Morita

(Comm. by Kenjiro SHODA, M. J. A., Sept. 12, 1974)

§1. Introduction. Let (X, A, x_0) be a pair of pointed topological spaces. Let $\{\mathfrak{U}_{\lambda} | \lambda \in A\}$ be the family of all locally finite normal open covers of X such that each \mathfrak{U}_{λ} has exactly one member containing x_0 . Then we have an inverse system $\{(X_{\lambda}, A_{\lambda}, x_{0\lambda}), [p_{\lambda\lambda'}], A\}$ in the pro-category of the homotopy category of pairs of pointed *CW* complexes by taking the nerves of \mathfrak{U}_{λ} and $\mathfrak{U}_{\lambda} \cap A$, by ordering Λ by means of refinements of covers, and by taking the homotopy classes of canonical projections. We call this inverse system the Čech system of (X, A, x_0) . The Čech system of (X, A) is defined similarly by using all locally finite normal open covers of X.

We define the *n*-th (Čech) homotopy pro-group $\pi_n(X, A, x_0)$ to be a pro-group $\{\pi_n(X_{\lambda}, A_{\lambda}, x_{0\lambda}), \pi_n(p_{\lambda\lambda'}), \Lambda\}$ $(n \ge 2)$; $\pi_1(X, A, x_0) = \{\pi_1(X_{\lambda}, A_{\lambda}, x_{0\lambda}), \pi_1(p_{\lambda\lambda'}), \Lambda\}$ is considered as a pro-object in the category of pointed sets and base-point preserving maps.

The *n*-th (Čech) homology pro-group $H_n(X, A)$ with coefficients in the additive group of integers is defined similarly by using the Čech system of (X, A). Since $\{\mathfrak{U}_{\lambda} | \lambda \in \Lambda\}$ described above is cofinal in the family of all locally finite normal open covers of X, the inverse system $\{H_n(X_{\lambda}, A_{\lambda}), H_n(p_{\lambda\lambda'}), A\}$ is isomorphic to $H_n(X, A)$ in the category of pro-groups. Hence, the set of the Hurewicz homomorphisms $\Phi_n(X_{\lambda}, A_{\lambda}, x_{0\lambda}) : \pi_n(X_{\lambda}, A_{\lambda}, x_{0\lambda}) \to H_n(X_{\lambda}, A_{\lambda})$ for $\lambda \in \Lambda$ determines a morphism $\Phi_n(X, A, x_0) : \pi_n(X, A, x_0) \to H_n(X, A)$ in the category of progroups, which we shall call the Hurewicz morphism.

A subspace A of a space X is said to be P-embedded in X if every locally finite normal open cover of A has a refinement which can be extended to a locally finite normal open cover of X. If A is P-embedded in X, $\{(A_2, x_{02}), [p_{12'}| (A_{2'}, x_{02'})], A\}$, which is obtained from the Čech system of (X, A, x_0) , is isomorphic to the Čech system of (A, x_0) . A pro-group $G = \{G_2, \phi_{22'}, A\}$ is a zero-object, G = 0 in notation, if G is isomorphic to a pro-group consisting of a single trivial group, or equivalently, if for each $\lambda \in A$ there is $\lambda' \in A$ with $\lambda < \lambda'$ such that $\phi_{22'} = 0$.

In this paper we shall establish the following analogue of the Hurewicz isomorphism theorem.

Theorem 1. Let (X, A, x_0) be a pair of pointed, connected, topological spaces such that $\pi_k(X, A, x_0) = 0$ for k with $1 \leq k \leq n$ $(n \geq 1)$. Then