101. On QF-Extensions in an H-Separable Extension

By Taichi NAKAMOTO

Okayama College of Science

(Comm. by Kenjiro Shoda, m. J. A., Sept. 12, 1974)

Throughout the present note, A/B will represent a ring extension with common identity 1, V the centralizer $V_A(B)$ of B in A, and C the Following K. Hirata [2], A/B is called an H-separable center of A. extension if $A \otimes_{B} A$ is A-A-isomorphic to an A-A-direct summand of a finite direct sum of copies of A. To be easily seen, A/B is H-separable if and only if there exist some $v_i \in V$ $(i=1, \dots, m)$ and casimir elements $\sum_{j} x_{ij} \otimes y_{ij}$ of $A \otimes_{B} A$ (which means $(\sum_{j} x_{ij} \otimes y_{ij}) x = x(\sum_{j} x_{ij} \otimes y_{ij})$ for all $x \in A$) such that $\sum_{i,j} x_{ij} \otimes y_{ij} v_i = 1 \otimes 1$ (cf. [4; Proposition 1]). Such a system $\{v_i; \sum_j x_{ij} \otimes y_{ij}\}_i$ will be called an *H*-system for A/B. On the other hand, A/B is called a left QF-extension if _BA is finitely generated (abbr. f.g.) projective and there exist some $f_r \in \text{Hom}(_BA_B, _BB_B)$ (r=1, \cdots , n) and casimir elements $\sum_{s} c_{rs} \otimes d_{rs}$ of $A \otimes_{B} A$ such that $\sum_{r,s} c_{rs} f_{r}(d_{rs})$ =1. Such a system $\{f_r; \sum_{s} c_{rs} \otimes d_{rs}\}_r$ will be called a left QF-system for A/B. Quite symmetrically, a right QF-extension and a right QFsystem can be defined, and A/B is called a QF-extension if A/B is left QF and right QF. One will easily see that A/B is QF if and only if there exist a left QF-system and a right QF-system for A/B.

The notion of an *H*-system will provide a new technique to reconstruct the commutor theory in *H*-separable extensions developed in [2], [3] and [5]. In this note, we use the technique to prove the following which are motivated by [4; Theorems 4 and 5]:

Theorem 1. Assume that A/B is an H-separable extension. Let B' be an intermediate ring of A/B with $V' = V_A(B')$ such that $V_A(V') = B'$ and $_{V'}V'_{V'} < \bigoplus_{V}V_{V'}$ (V' is a V'-V'-direct summand of V).

(1) If there exists a left (resp. right) QF-system for A/B' then V'/C is right (resp. left) QF.

(2) If there exists a right (resp. left) QF-system for V'/C then $A_{B'}$ (resp. $_{B'}A$) is f.g. projective and there exists a left (resp. right) QF-system for A/B'.

(3) A/B' is QF if and only if so is V'/C.

Theorem 2. Assume that A/B is an H-separable extension. Let B' be an intermediate ring of A/B with $V' = V_A(B')$ such that ${}_{B'}B'_{B'} < \bigoplus_{B'}A_{B'}$.

(1) If there exists a left (resp. right) QF-system for B'/B, then $_{V'}V$ (resp. $V_{V'}$) is f.g. projective and there exists a right (resp. left)