96. Fourier Transform of Banach Algebra Valued Functions on Group. II*⁹

By Reri TAKAMATSU

Department of Mathematics, Sophia University

(Comm. by Kôsaku Yosida, M. J. A., Sept. 12, 1974)

The next theorem is a generalization of the theorem in the previous paper.

Theorem. Let h be a continuous mapping of $L^1(G \rightarrow A)$ into B with the following properties;

(1) h(af+bg)=ah(f)+bh(g) for any complex numbers a, b, and $f, g \in L^1(G \rightarrow A),$

(2) $h(f*g) = h(f) \cdot h(g)$ for $f, g \in L^1(G \rightarrow A)$,

(3) for any $\varepsilon > 0$ there exists $f_{\bullet} \in L^{1}(G \to A)$ such that $||h(f_{\bullet}) - 1||_{B} < \varepsilon$.

Then there exist a homomorphism α of A into B and a bounded continuous homomorphism φ of G into $C_B(\alpha(A))$ such that

$$h(f) = \int_{G} \varphi(x) \alpha(f(x)) dx, \quad \text{for } f \in L^{1}(G \to A),$$

where $C_B(\alpha(A))$ means the set of all elements of B that commute with every element in the range of α .

Proof. By the property (3), there exists $f_1 \in L^1(G \to A)$ such that $h(f_1)^{-1}$ exists in B. For this f_1 and for any fixed $f \in L^1(G \to A)$, by Proposition 4, there exists a sequence $\{E_n\}$ of measurable sets in G such that

$$\begin{aligned} &|||m(E_n)^{-1}\chi_{E_n}*f_1-f_1||| < 1/n, \\ &|||m(E_n)^{-1}\chi_{E_n}*f-f||| < 1/n, \qquad (n=1,2,\cdots). \\ &\in A, \end{aligned}$$

$$||m(E_n)^{-1}h(\chi_{E_n}*af_1)-h(af_1)||_{B}=||m(E_n)^{-1}h(a\chi_{E_n})h(f_1)-h(af_1)||_{B}$$

$$\leq ||h||\cdot||a||/n,$$

which vanishes as n tends to ∞ .

Then, for a

We put $\alpha(a) = \lim_{n \to \infty} m(E_n)^{-1}h(a\chi_{E_n}) = h(af_1)h(f_1)^{-1}$. Replacing f_1 by f in the inequality above, we get $h(af) = \alpha(a)h(f)$.

Since the definition of α does not depend on the choice of $\{E_n\}$, $h(af) = \alpha(a)h(f)$ holds good for every $f \in L^1(G \to A)$.

We show α is a homomorphism.

$$\alpha(ab) = \alpha(ab)h(f_1)h(f_1)^{-1} = h(abf_1)h(f_1)^{-1} = \alpha(a)\alpha(b)h(f_1)h(f_1)^{-1} = \alpha(a)\alpha(b).$$

 $^{^{\}ast)}$ Continuation of the same titled paper, published in this Proceedings, June 1974.