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Let X be a complex mnifold and let ) denote a monoidal trans-
form o X o which the center is a point. The olowing proposition
is well-known"

If X admits a Kihler metric, then also admits a Kihler metric.
In this note we shall prove an extension theorem or Khler

metrics o which the converse o the above proposition is a corollary.
Moreover we shall show a similar extension theorem or a certain type
o branched coverings.

1. Formulation of the results. In this section we denote by X
a complex manifold and let D={z e Clz<r}.

Proposition A. Assume that D--O has a Kihler form o. Then
D admits a Kihler form co such that to-do on D--D#/.

Corollary. Let P denote a point on X. If X--P is a Kihler
manifold, then X is also a Kihler manifold.

Let D=Dr--D=D be the m-old branched covering defined by
the mapping z-z, and let /" denote the covering transformation
group o D with respect to D. Moreover let p" X-D be a surjective
proper smooth holomorphic mapping, X=XxD, and denote by z the
induced covering map" X-+X. The group F acts on X in an obvious
manner.

Proposition B. If X has a F-invariant Kihler metric , then X
admits a Kihler metric o such that =z*w on z-’p (D--D(/).

Corollary. Let and be compact Riemann surfaces, X a com-
pact complex manifold of dimension n, and let 19" X-+z] be a fibre
manifold. Moreover let " ]--.z] be a finite Galois covering. Let f(
denote the normalization of the fibre product XX. Assume that the
induced covering X-X has its branch locus on regular fibres of p" X
-+z]. Then X is a Kihler manifold if and only if X is a Kihler mani-
fold.

2. Proof of Proposition A. By _q) and we denote, respec-
tively, the sheaves o differentiable unctions and differentiable d-closed
(1, 1)-orms. We have a natural exact sequence o sheaves"

’--i-aa
0 >(C)+0 >..q) > >0.

Lemma 1. Let o be a d-closed (1, 1)-form on W=D--O, n2.


