91. Extension Theorems for Kähler Metrics

By Yoichi Miyaoka
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1974)

Let X be a complex manifold and let \hat{X} denote a monoidal transform of X of which the center is a point. The folowing proposition is well-known:

If X admits a Kähler metric, then \hat{X} also admits a Kähler metric.
In this note we shall prove an extension theorem for Kähler metrics of which the converse of the above proposition is a corollary. Moreover we shall show a similar extension theorem for a certain type of branched coverings.

1. Formulation of the results. In this section we denote by X a complex manifold and let $D_{r}^{n}=\left\{z \in C^{n} \mid z<r\right\}$.

Proposition A. Assume that $D_{r}^{n}-0$ has a Kähler form ω. Then D_{r}^{n} admits a Kähler form $\tilde{\omega}$ such that $\tilde{\omega}=\omega$ on $D_{r}^{n}-D_{2 r / 3}^{n}$.

Corollary. Let P denote a point on X. If $X-P$ is a Kähler manifold, then X is also a Kähler manifold.

Let $\tilde{D}=D_{r}^{1} \rightarrow D=D_{r^{m}}^{1}$ be the m-fold branched covering defined by the mapping $z \rightarrow z^{m}$, and let Γ denote the covering transformation group of \tilde{D} with respect to D. Moreover let $p: X \rightarrow D$ be a surjective proper smooth holomorphic mapping, $\tilde{X}=X \times{ }_{D} \tilde{D}$, and denote by π the induced covering map: $\tilde{X} \rightarrow X$. The group Γ acts on \tilde{X} in an obvious manner.

Proposition B. If \tilde{X} has a Γ-invariant Kähler metric $\tilde{\omega}$, then X admits a Kähler metric ω such that $\tilde{\omega}=\pi^{*} \omega$ on $\pi^{-1} p^{-1}\left(D-D_{(2 r / 3) m}^{1}\right)$.

Corollary. Let Δ and $\tilde{\Delta}$ be compact Riemann surfaces, X a compact complex manifold of dimension n, and let $p: X \rightarrow \Delta$ be a fibre manifold. Moreover let $\pi: \tilde{\Delta} \rightarrow \Delta$ be a finite Galois covering. Let \tilde{X} denote the normalization of the fibre product $X \times_{4} \tilde{\Delta}$. Assume that the induced covering $\tilde{X} \rightarrow X$ has its branch locus on regular fibres of $p: X$ $\rightarrow \Delta$. Then X is a Kähler manifold if and only if \tilde{X} is a Kähler manifold.
2. Proof of Proposition A. By \mathscr{D} and \mathscr{F} we denote, respectively, the sheaves of differentiable functions and differentiable d-closed (1,1)-forms. We have a natural exact sequence of sheaves:

$$
0 \longrightarrow \mathcal{O}+\overline{\mathcal{O}} \longrightarrow \mathscr{D} \xrightarrow{\sqrt{ } \overline{-1} \partial \bar{\partial}} \mathscr{E} \longrightarrow 0 .
$$

Lemma 1. Let ω be a d-closed (1,1)-form on $W=D_{r}^{n}-0, n>2$.

