140. Double Centralizers of Torsionless Modules*)

By Yasutaka SUZUKI Department of Mathematics, Yamagata University (Comm. by Kinjirô Kunugi, M. J. A., Oct. 12, 1974)

In this note, we make the assumption that a ring has an identity element and modules are unital. For a left R-module $_RM$ where R is a ring, $D = \operatorname{End}_R(_RM)$ is an R-endomorphism ring of $_RM$ operating on the side opposite to the scalars. Then $_RM$ is considered as an (R, D)-bimodule. A D-endomorphism ring $Q = \operatorname{End}_D(M_D)$ of M_D is called a double centralizer of $_RM$.

Definition. Let $_RM$ and $_RU$ be left R-modules, $_RM$ is said to be $_RU$ -torsionless in case for each non-zero element m of $_RM$, there exists an R-homomorphism ϕ of $_RM$ into $_RU$ such that $(m)\phi \neq 0$.

We say that a left R-module $_RM$ is torsionless if $_RM$ is $_RR$ -torsionless and $_RN$ is faithful if $_RR$ is $_RN$ -torsionless. Let Q be a double centralizer of a faithful left R-module $_RM$, then there exists a canonical ring monomorphism of R into Q, written as $R \subseteq Q$. A faithful left R-module $_RM$ is said to have the double centralizer property if R = Q, where Q is a double centralizer of $_RM$.

Definition. A ring R is left QF-1 if every faithful left R-module has the double centralizer property.

QF-1 rings were first described by R. M. Thrall (1948 [4]) and have been examined by many authors. It was proved that the double centralizer of a faithful torsionless left R-module is a rational extension of R_R . Furthermore the double centralizer of a dominant left R-module is a maximal right quotient ring of R (see T. Kato [1] and H. Tachikawa [3]). In the section 1, the next theorem is proved.

Theorem. Let R be a ring with minimum condition and U be the intersection of all left faithful two-sided ideals of R. Then U is also a left faithful two-sided ideal of R and the double centralizer of $_RU$ is a maximal right quotient ring of R.

In the section 2, we shall prove that for a given faithful left R-module $_RM$, $_RM$ has the double centralizer property if and only if $_KKe$ has the double centralizer property, where

$$K = \begin{pmatrix} R & M \\ \operatorname{Hom}_R(_R M, _R R) & \operatorname{End}_R(_R M) \end{pmatrix} \text{ and } e = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in K.$$

The author would like to express his gratitude to Prof. H. Tachikawa and Dr. T. Kato for useful suggestions and observations.

^{*)} Dedicated to professor Kiiti Morita on his 60th birthday.