133. On the Fundamental Units of Real Quadratic Fields

By Masakazu Kutsuna
College of General Education, Chukyo University
(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

1. Let $\boldsymbol{Q}(\sqrt{\bar{D}}),(D>0$ square-free rational integer), be a real quadratic field and put $D=n^{2}+r(-n<r \leqq n)$. Then, if $4 n \equiv 0(\bmod r)$ holds, the fundamental unit $\varepsilon_{D}>1$ of $Q(\sqrt{D})$ is well known ([1]) and such a real quadratic field $Q(\sqrt{D})$ is called $R-D$ type. On the other hand, for any given real quadratic field $\boldsymbol{Q}(\sqrt{D})$, its fundamental unit can be calculated by the continued fraction expansion of \sqrt{D}.

In this note, we shall first describe the fundamental units of all real quadratic fields in a similar fashion to $R-D$ type, and give next its relation between continued fraction expansion. Finally, we shall give a generalization of a result of Morikawa [3] concerned with these facts.
2. The following theorem is a generalization of a result of Degert [1]:

Theorem 1. For any given positive square-free integer D, let v_{0} be the least positive integer such that $v_{0}^{2} D=n_{0}^{2}+r_{0}$ holds with integers n_{0}, r_{0} satisfying $-n_{0}<r_{0} \leqq n_{0}$ and $4 n_{0} \equiv 0\left(\bmod r_{0}\right)$. Then the fundamental unit $\varepsilon_{D}>1$ of $\boldsymbol{Q}(\sqrt{\bar{D}})$ is of the following form:

$$
\begin{aligned}
& \varepsilon_{D}=n_{0}+v_{0} \sqrt{D}, \quad N \varepsilon_{D}=-\operatorname{sgn} r_{0} \text { for }\left|r_{0}\right|=1 \text {, (except for } D=5, v_{0}=1 \text {), } \\
& \varepsilon_{D}=\left(n_{0}+v_{0} \sqrt{D}\right) / 2, \quad N \varepsilon_{D}=-\operatorname{sgn} r_{0} \text { for }\left|r_{0}\right|=4, \\
& \varepsilon_{D}=\left[\left(2 n_{0}^{2}+r_{0}\right)+2 n_{0} v_{0} \sqrt{D}\right] /\left|r_{0}\right|, \quad N \varepsilon_{D}=1 \quad \text { for }\left|r_{0}\right| \neq 1,4 .
\end{aligned}
$$

Remark. In the special case of $v_{0}=1$, this result coincides with Degert's.

Proof. Let $\varepsilon_{D}=\left(t_{0}+u_{0} \sqrt{D}\right) / 2$ be the fundamental unit of $\boldsymbol{Q}(\sqrt{D})$ and ε_{1} be the right-hand side of a formula for ε_{D} in Theorem 1. Then, it is easily shown that $u_{0}^{2} D=t_{0}^{2} \mp 4,4 t_{0} \equiv 0(\bmod 4)$ and that ε_{1} is a unit of $\boldsymbol{Q}(\sqrt{D})$. Here, if we suppose $\varepsilon_{D} \neq \varepsilon_{1}$, then it yields a contradiction. For, in the case of $\left|r_{0}\right|>4$, we get

$$
\varepsilon_{1}=\left[\left(2 n_{0}^{2}+r_{0}\right)+2 n_{0} v_{0} \sqrt{D}\right] /\left|r_{0}\right| \geqq \varepsilon_{D}^{2}=\left(t_{0}^{2} \pm 2+t_{0} u_{0} \sqrt{D}\right) / 2 .
$$

Hence, we have $n_{0} v_{0}>t_{0} u_{0}$. On the other hand, since v_{0} is the least positive integer such that $v_{0}^{2} D=n_{0}^{2}+r_{0},-n_{0}<r_{0} \leqq n_{0}, 4 n_{0} \equiv 0\left(\bmod r_{0}\right)$, we get $v_{0}<u_{0}$ and $n_{0}<t_{0}$, hence we have $n_{0} v_{0}<t_{0} u_{0}$. This is a contradiction. In other cases, we can easily induce contradiction similarly.
3. For any given D, it is generally difficult to find v_{0} in Theorem 1 , but if we use the continued fraction expansion of \sqrt{D}, v_{0} is easily

