133. On the Fundamental Units of Real Quadratic Fields

By Masakazu Kutsuna

College of General Education, Chukyo University

(Comm. by Kenjiro SHODA, M. J. A., Oct. 12, 1974)

1. Let $Q(\sqrt{D})$, (D>0 square-free rational integer), be a real quadratic field and put $D=n^2+r$ $(-n < r \le n)$. Then, if $4n \equiv 0 \pmod{r}$ holds, the fundamental unit $\varepsilon_D > 1$ of $Q(\sqrt{D})$ is well known ([1]) and such a real quadratic field $Q(\sqrt{D})$ is called *R-D* type. On the other hand, for any given real quadratic field $Q(\sqrt{D})$, its fundamental unit can be calculated by the continued fraction expansion of \sqrt{D} .

In this note, we shall first describe the fundamental units of all real quadratic fields in a similar fashion to R-D type, and give next its relation between continued fraction expansion. Finally, we shall give a generalization of a result of Morikawa [3] concerned with these facts.

2. The following theorem is a generalization of a result of Degert [1]:

Theorem 1. For any given positive square-free integer D, let v_0 be the least positive integer such that $v_0^2 D = n_0^2 + r_0$ holds with integers n_0, r_0 satisfying $-n_0 < r_0 \le n_0$ and $4n_0 \equiv 0 \pmod{r_0}$. Then the fundamental unit $\varepsilon_D > 1$ of $\mathbf{Q}(\sqrt{D})$ is of the following form:

 $egin{aligned} &arepsilon_D = n_0 + v_0 \sqrt{D}, & N arepsilon_D = -\operatorname{sgn} r_0 & ext{for } |r_0| = 1, ext{ (except for } D = 5, v_0 = 1), \ &arepsilon_D = (n_0 + v_0 \sqrt{D})/2, & N arepsilon_D = -\operatorname{sgn} r_0 & ext{for } |r_0| = 4, \end{aligned}$

 $\varepsilon_D = [(2n_0^2 + r_0) + 2n_0v_0\sqrt{D}]/|r_0|, \quad N\varepsilon_D = 1 \quad \text{for } |r_0| \neq 1, 4.$

Remark. In the special case of $v_0=1$, this result coincides with Degert's.

Proof. Let $\varepsilon_D = (t_0 + u_0 \sqrt{D})/2$ be the fundamental unit of $Q(\sqrt{D})$ and ε_1 be the right-hand side of a formula for ε_D in Theorem 1. Then, it is easily shown that $u_0^2 D = t_0^2 \mp 4$, $4t_0 \equiv 0 \pmod{4}$ and that ε_1 is a unit of $Q(\sqrt{D})$. Here, if we suppose $\varepsilon_D \neq \varepsilon_1$, then it yields a contradiction. For, in the case of $|r_0| > 4$, we get

 $\varepsilon_1 = [(2n_0^2 + r_0) + 2n_0v_0\sqrt{D}]/|r_0| \ge \varepsilon_D^2 = (t_0^2 \pm 2 + t_0u_0\sqrt{D})/2.$

Hence, we have $n_0v_0 > t_0u_0$. On the other hand, since v_0 is the least positive integer such that $v_0^2D = n_0^2 + r_0$, $-n_0 < r_0 \le n_0$, $4n_0 \equiv 0 \pmod{r_0}$, we get $v_0 < u_0$ and $n_0 < t_0$, hence we have $n_0v_0 < t_0u_0$. This is a contradiction. In other cases, we can easily induce contradiction similarly.

3. For any given D, it is generally difficult to find v_0 in Theorem 1, but if we use the continued fraction expansion of \sqrt{D} , v_0 is easily