# 132. On Sylow Subgroups and an Extension of Groups 

By Zensiro Goseki<br>Gunma University<br>(Comm. by Kenjiro Shoda, m. J. A., Oct. 12, 1974)

Let $A$ and $B$ be groups. If there are homomorphisms $f$ and $g$ such that a sequence $\xrightarrow{f} A \xrightarrow{g} B \xrightarrow{f} A \xrightarrow{g} B \xrightarrow{f}$ is exact, then we denote this collection by $(A, B: f, g)$ and we say $(A, B: f, g)$ to be well defined. Let ( $A, B: f, g$ ) and ( $C, D: f_{1}, g_{1}$ ) be well defined. If $C$ and $D$ are subgroups of $A$ and $B$, respectively, and if $f=f_{1}$ on $C$ and $g=g_{1}$ on $D$, then we call (C, $D: f_{1}, g_{1}$ ) a subgroup of ( $A, B: f, g$ ) and in this case, we denote ( $C, D: f_{1}, g_{1}$ ) by ( $C, D: f, g$ ). Furthermore, we call ( $C, D: f, g$ ) a normal subgroup of ( $A, B: f, g$ ) if $C \triangleleft A$ and $D \triangleleft B$, and a Sylow subgroup of $(A, B: f, g)$ if $C$ is a Sylow subgroup of $A$ (in this case $D$ is also a Sylow subgroup of $B$ ). We shall discuss the existence of such Sylow subgroups ( $C, D: f, g$ ) of $(A, B: f, g$ ). It is easy to see that there are homomorphisms $f$ and $g$ such that ( $A, B: f, g$ ) is well defined iff there are groups $M, N$ and homomorphisms $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ such that sequences $1 \rightarrow M \xrightarrow{\alpha_{1}} A \xrightarrow{\alpha_{2}} N \rightarrow 1$ and $1 \rightarrow N \xrightarrow{\beta_{1}} B \xrightarrow{\beta_{2}} M \rightarrow 1$ are exact. This shows that the results given in this note are related to an extension of groups.

Lemma 1. Let $(A, B: f, g)$ be well defined. Let $M$ and $N$ be subgroups of $A$ and $B$, respectively. Then ( $M, N: f, g$ ) is well defined iff $f(M)=f(A) \cap N$ and $g(N)=g(B) \cap M$.

Proof. Since ( $A, B: f, g$ ) is well defined, $A / g(B) \cong f(A)$ and so $M / M \cap g(B) \cong M g(B) / g(B) \cong f(M)$. Assume that ( $M, N: f, g$ ) is well defined. Then $M / g(N) \cong f(M)$. Hence $M / g(N) \cong M / M \cap g(B)$ where this isomorphism is given by $x g(N) \rightarrow x(M \cap g(B))$ for all $x \in M$. Hence $M \cap g(B)=g(N)$. Similarly $N \cap f(A)=f(M)$. Conversely, let $f(M)$ $=N \cap f(A) \quad$ and $\quad g(N)=M \cap g(B)$. Then $\quad M / g(N)=M / M \cap g(B)$ $\cong M g(B) / g(B) \cong f(M)$, i.e., $M / g(N) \cong f(M)$ where this isomorphism is given by $x g(N) \rightarrow f(x)$ for all $x \in M$. Similarly $N / f(M) \cong g(N)$ where this isomorphism is given by $y f(M) \rightarrow g(y)$ for all $y \in N$. Hence ( $M, N: f, g$ ) is well defined.

Lemma 2. Let $(A, B: f, g)$ be well defined and let $(M, N: f, g)$ be a normal subgroup of $(A, B: f, g)$. Then $(A / M, B / N: \bar{f}, \bar{g})$ is well defined, where $\bar{f}$ and $\bar{g}$ are homomorphisms which are naturally induced by $f$ and $g$, respectively.

Proof. By Lemma 1, $f(A) \cap N=f(M)$. Hence $f^{-1}(N)=f^{-1}(f(A)$

