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1. As was pointed out in Math. Reviews 22 (1961), #12146, the
proof of [8; Theorem] contains an error but the theorem holds good
for solvable groups and groups with p-complement. Recently,
Y. Tsushima [6] has showed that the theorem is still true for p-solvable
groups. In the present paper, we shall give an alternative proof to
the above fact, and several related results on the radical of a group
algebra. We are indebted to Mr. Y. Ninomiya and Mr. Y. Tsushima
for their useful advice.

Let K be an algebraically closed field of characteristic p>0, and
G a finite group with a normal subgroup N such that|N|is not a power
of p and G/N is a p-group. Further, G, will represent a p-Sylow sub-
group of G, KG the group algebra of G over K, J(KG) the radical of
KG, and [J(KG): K] the K-dimension of J(KG).

2. Now, let {T},T,, - - -, T} be the set of all non-conjugate irre-
ducible KN-modules, and G, the inertia group of T,, where T, cor-
responds to the l-representation. By [4; (III. 3.1)] each T, can be
extended uniquely to an irreducible module 7, of G,. We shall prove
first the following :

Lemma 1 (cf. [2, (50.2)]). {1¢,T¢,..., T} is the set of all irre-
ducible modules of G.

Proof. At first, we shall show that 7¢ is irreducible (cf. [5, Lemma
2]). Let M be a maximal KG-submodule of 7¢. By Homyg, (T, T¢/ M)
=Homy, (T'¢, T¢/M) =0, there exists a KG;-submodule S; of T¢/M,
which is KG-isomorphic to 7;,. By Clliford’s theorem, 7¢/M is KN-
isomorphic to a direct sum of e-copies of > i ,®T{*?, where {z,} is a
left cross section of G; in G. Therefore, (G: G)IT;: K1=[T¢: K]
>[T9/M: Kl=e(G: G)IT;: K] and [T¢: K1=[T¢/M: K], which means
that M =0 and ’ff is irreducible. Next, we shall prove that the above
modules are all non-lsomorphlc Let {y,| 1sl<1~} is a left cross section
of G; in G. Then Homg, (T¢, TG) Homgg, d,, 1¢ HTHomgy (Ti,Tj)
=3 DHomgy (T;, y,®T,;)=0for i+j. Hence, it remains only to prove
that s is the number of p-regular classes of G. Let {S,,S,, ---,S;} be
the set of all irreducible representations of N, o; Brauer character
of S;. Then w; is conjugate to w, if and only if S; is conjugate to S,.
By Brauer’s permutation lemma [3, (12.1)], the number of orbits of a



