130. On C. Loncour's Results

By Kaoru Motose
Department of Mathematics, Shinshu University

(Comm. b.ij Kenjiro Shoda, M. J. A., Oct. 12, 1974)

The purpose of this note is to present a theorem which refines the results of C. Loncour [3, Theorems 5 and 6] with a simple proof. Let G be the direct product of finite groups M and $M^{\prime}, K G$ the group algebra of G over a field K of characteristic $p, J(K G)$ the radical of $K G, t(G)$ the nilpotency index of $J(K G)$. Let $r_{i}=\left[J(K M)^{i}: K\right]$ (the K-dimension of $J(K M)^{i}$) and $r_{i}^{\prime}=\left[J\left(K M^{\prime}\right)^{i}: K\right]$, where $J(K M)^{0}=K M$ and $J\left(K M^{\prime}\right)^{0}$ $=K M^{\prime}$. Let s be a fixed integer such that $1 \leqq s<t(G)$. Let T_{i} $=\left\{a_{i j} \mid 1 \leqq j \leqq r_{i}-r_{i+1}\right\}$ be a subset of $J(K M)^{i}$ which forms a K-basis of $J(K M)^{i}$ modulo $J(K M)^{i+1}$ (for $i<s$), and $T_{s}=\left\{a_{s k} \mid 1 \leqq k \leqq r_{s}\right\}^{1)}$ a K-basis of $J(K M)^{s}$. Quite similarly, we define $T_{k}^{\prime}=\left\{\alpha_{k l}^{\prime} \mid 1 \leqq l \leqq r_{k}^{\prime}-r_{k+1}^{\prime}\right\}$ and T_{s}^{\prime} $=\left\{a_{s l}^{\prime} \mid 1 \leqq l \leqq r_{s}^{\prime}\right\}$ for $K M^{\prime}$.

Now, our theorem is stated as follows:
Theorem. ${ }^{2)}$ (1) $\left[J(K G)^{s}: K\right]=\sum_{i=0}^{s} r_{i} r_{s-i}^{\prime}-\sum_{i=1}^{s} r_{i} r_{s-i+1}^{\prime}$.
(2) $J(K G)^{s}=\sum_{i=0}^{s} J(K M)^{i} J\left(K M^{\prime}\right)^{s-i}$.
(3) $t(G)=t(M)+t\left(M^{\prime}\right)-1$.
(4) ${ }^{3)} \Omega=\bigcup_{s \leqq i+k} T_{i} T_{k}^{\prime}$ forms a basis for $J(K G)^{s}$, where $T_{i} T_{k}^{\prime}$ $=\left\{t t^{\prime} \mid t \in T_{i}, t^{\prime} \in T_{k}^{\prime}\right\}$.

Proof. (1) and (2): We assume first that $s=1$. Let L be a splitting field for G and a finite dimensional separable extension of K. Then L is a splitting field for M and $M^{\prime},[J(K G): K]=[J(L G): L]$ (cf. [2, p. 252]), and $\left\{U_{i} \otimes V_{j} \mid 1 \leqq i \leqq a, 1 \leqq j \leqq b\right\}$ is the set of all irreducible $L G$-modules (cf. [1, p. 586]), where $\left\{U_{i} \mid 1 \leqq i \leqq a\right\}$ and $\left\{V_{j} \mid 1 \leqq j \leqq b\right\}$ are the sets of all irreducible $L M$-modules and $L M^{\prime}$-modules, respectively. Thus, $\quad r_{1} r_{0}^{\prime}+r_{0} r_{1}^{\prime}-r_{1} r_{1}^{\prime}=r_{0}^{\prime}\left(r_{0}-\sum_{i=1}^{a}\left[U_{i}: L\right]^{2}\right)+r_{0}\left(r_{0}^{\prime}-\sum_{i=1}^{b}\left[V_{i}: L\right]^{2}\right)$ $-\left(r_{0}-\sum_{i=1}^{a}\left[U_{i}: L\right]^{2}\right)\left(r_{0}^{\prime}-\sum_{i=1}^{b}\left[V_{i}: L\right]^{2}\right)=r_{0} r_{0}^{\prime}-\sum_{i=1}^{a}{ }_{j=1}^{b}\left[U_{i}: L\right]^{2}\left[V_{j}: L\right]^{2}$ $=[J(L G): L]=[J(K G): K]$, which proves (1) for the case $s=1$. Noting that $J(K M) M^{\prime} \cap J\left(K M^{\prime}\right) M=J(K M) J\left(K M^{\prime}\right) \cong J(K M) \otimes J\left(K M^{\prime}\right)$, we can see that $\left[\left(J(K M) M^{\prime}+J\left(K M^{\prime}\right) M\right): K\right]=\left[J(K M) M^{\prime}: K\right]+\left[J\left(K M^{\prime}\right) M: K\right]$ $-\left[\left(J(K M) M^{\prime} \cap J\left(K M^{\prime}\right) M\right): K\right]=r_{1} r_{0}^{\prime}+r_{0} r_{1}^{\prime}-r_{1} r_{1}^{\prime}=[J(K G): K]$. Since $J(K M) M^{\prime}+J\left(K M^{\prime}\right) M$ is a nilpotent ideal whose K-dimension is $[J(K G): K]$, we have $J(K G)=J(K M) M^{\prime}+J\left(K M^{\prime}\right) M$, which proves

[^0]
[^0]: 1) If $J(K M)^{t}=0$ for some $t<s$, then we set $T_{j}=\phi$ and $r_{j}=0$ for $j \geqq t$.
 2) Cf. [2, pp. 122-123 and 251-254].
 3) Ω is slightly different from C. Loncour's basis of [3, Theorem 5 (2)]. However, it is easy to give his basis for $J(K G)$ by Theorem (4).
