122. The Fixed Point Set of an Involution and Theorems of the Borsuk.Ulam Type

By Akio Hattori
Department of Mathematics, University of Tokyo
(Comm. by Kunihiko Kodaira, m. J. a., Oct. 12, 1974)

1. Statement of results. In this note, h^{*} will denote either the unoriented cobordism theory Ω^{*} or the usual cohomology theory with \boldsymbol{Z}_{2}-coefficients $H^{*}\left(; \boldsymbol{Z}_{2}\right)$. The corresponding equivariant cohomology theory for \boldsymbol{Z}_{2}-spaces will be denoted by $h_{\boldsymbol{Z}_{2}}^{*}$.

Let M be a manifold and σ an involution on $M .{ }^{11}$ We define an embedding $\Delta: M \rightarrow M^{2}=M \times M$ by $\Delta(x)=(x, \sigma x)$. Then Δ is equivariant with respect to the involution σ on M and the involution T on M^{2} which is defined by $T\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{1}\right)$. Let $\Delta_{!}: h_{Z_{2}}^{q}(M) \rightarrow h_{Z_{2}}^{q+m}\left(M^{2}\right)$ denote the Gysin homomorphism for Δ, where $m=\operatorname{dim} M$. We put $\theta(\sigma)=\Delta_{!}(1)$ $\in h_{Z_{2}}^{m}\left(M^{2}\right)$.

In the present note we shall give an explicit formula for $\theta(\sigma)$ and apply it to get theorems of the Borsuk-Ulam type. Our results generalize those of Nakaoka [3], [4]. From the formula for $\theta(\sigma)$ we shall also derive a sort of integrality theorem concernining the fixed point set of σ; see Theorem 4. Detailed accounts will appear elsewhere.

Let S^{∞} be the infinite dimensional sphere with the antipodal involution. The projection $\pi: S^{\infty} \times M^{2} \rightarrow S^{\infty} \times M^{2}$ induces the Gysin homomorphism $\pi_{!}: h^{*}\left(M^{2}\right) \rightarrow h_{Z_{2}}^{*}\left(M^{2}\right)$ and the usual homomorphism $\pi^{*}: h_{Z_{2}}^{*}\left(M^{2}\right)$ $\rightarrow h^{*}\left(M^{2}\right)$. Let $d: M \rightarrow M^{2}$ be the diagonal map. Since $d(M)$ is the fixed point set of $T, h_{Z_{2}}^{*}(d(M))$ is isomorphic to $h_{Z_{2}}^{*}(p t){ }_{h^{*}(p t)}^{\otimes} h^{*}(M)$ and d induces $d^{*}: h_{\mathbf{Z}_{2}}^{*}\left(M^{2}\right) \rightarrow h_{\mathbf{Z}_{2}}^{*}(p t) \underset{h^{*}(p t)}{\otimes} h^{*}(M)$.

Lemma 1. The homomorphism
is injective.

$$
\pi^{*} \oplus d^{*}: h_{Z_{2}}^{*}\left(M^{2}\right) \rightarrow h^{*}\left(M^{2}\right) \oplus\left(h_{Z_{2}}^{*}(p t) \bigotimes_{h^{*}(p t)}^{\otimes} h^{*}(M)\right)
$$

We denote by S the multiplicative set $\left\{w_{1}^{k} \mid k \geq 1\right\}$ in $h_{\boldsymbol{Z}_{2}}^{*}(p t)=h^{*}\left(P^{\infty}\right)$ where w_{1} is the universal first Stiefel-Whitney class. If X is a $Z_{2}-$ space then $h_{Z_{2}}^{*}(X)$ is an $h_{Z_{2}}^{*}(p t)$-module and we can consider the localized ring $S^{-1} h_{Z_{2}}^{*}(X)$ of $h_{Z_{2}}^{*}(X)$ with respect to S. Note that $h_{Z_{2}}^{*}(p t)$ is isomorphic to a formal power series ring $h^{*}(p t)\left[\left[w_{1}\right]\right]$ and $h_{Z_{2}}^{*}(p t) \underset{h^{*}(p t)}{\otimes} h^{*}(M)$

1) In this note we work in the smooth category. All manifolds will be connected, compact and without boundary unless otherwise stated.
