No. 8]

122. The Fixed Point Set of an Involution and Theorems of the Borsuk-Ulam Type

By Akio HATTORI

Department of Mathematics, University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Oct. 12, 1974)

1. Statement of results. In this note, h^* will denote either the unoriented cobordism theory \mathcal{N}^* or the usual cohomology theory with \mathbb{Z}_2 -coefficients $H^*(; \mathbb{Z}_2)$. The corresponding equivariant cohomology theory for \mathbb{Z}_2 -spaces will be denoted by $h_{\mathbb{Z}_2}^*$.

Let M be a manifold and σ an involution on M.¹⁾ We define an embedding $\Delta: M \to M^2 = M \times M$ by $\Delta(x) = (x, \sigma x)$. Then Δ is equivariant with respect to the involution σ on M and the involution T on M^2 which is defined by $T(x_1, x_2) = (x_2, x_1)$. Let $\Delta_1: h_{\mathbb{Z}_2}^q(M) \to h_{\mathbb{Z}_2}^{q+m}(M^2)$ denote the Gysin homomorphism for Δ , where $m = \dim M$. We put $\theta(\sigma) = \Delta_1(1)$ $\in h_{\mathbb{Z}_2}^m(M^2)$.

In the present note we shall give an explicit formula for $\theta(\sigma)$ and apply it to get theorems of the Borsuk-Ulam type. Our results generalize those of Nakaoka [3], [4]. From the formula for $\theta(\sigma)$ we shall also derive a sort of integrality theorem concerning the fixed point set of σ ; see Theorem 4. Detailed accounts will appear elsewhere.

Let S^{∞} be the infinite dimensional sphere with the antipodal involution. The projection $\pi: S^{\infty} \times M^2 \to S^{\infty} \times M^2$ induces the Gysin homomorphism $\pi_1: h^*(M^2) \to h^*_{Z_2}(M^2)$ and the usual homomorphism $\pi^*: h^*_{Z_2}(M^2) \to h^*(M^2)$. Let $d: M \to M^2$ be the diagonal map. Since d(M) is the fixed point set of $T, h^*_{Z_2}(d(M))$ is isomorphic to $h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M)$ and d

induces $d^*: h^*_{Z_2}(M^2) \rightarrow h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M).$

Lemma 1. The homomorphism $\pi^* \oplus d^* : h^*_{Z_2}(M^2) \to h^*(M^2) \oplus (h^*_{Z_2}(pt) \bigotimes_{h^*(pt)} h^*(M))$

is injective.

We denote by S the multiplicative set $\{w_1^*|k\geq 1\}$ in $h_{Z_2}^*(pt)=h^*(P^{\infty})$ where w_1 is the universal first Stiefel-Whitney class. If X is a Z_2 space then $h_{Z_2}^*(X)$ is an $h_{Z_2}^*(pt)$ -module and we can consider the localized ring $S^{-1}h_{Z_2}^*(X)$ of $h_{Z_2}^*(X)$ with respect to S. Note that $h_{Z_2}^*(pt)$ is isomorphic to a formal power series ring $h^*(pt)[[w_1]]$ and $h_{Z_2}^*(pt) \bigotimes_{h^*(pt)} h^*(M)$

¹⁾ In this note we work in the smooth category. All manifolds will be connected, compact and without boundary unless otherwise stated.