157. On the Trotter-Lie Product Formula^{*)}

By Tosio Kato

Department of Mathematics, University of California, Berkeley, California, U. S. A.

(Comm. by Kôsaku Yosida, M. J. A., Nov. 12, 1974)

1. In [1, Proposition 7.9] Chernoff gives an example of a pair A, B of nonnegative selfadjoint operators such that

(1) $(e^{-tA/n}e^{-tB/n})^n \xrightarrow{s} 0$ as $n \to \infty$, $t \ge 0$,

where \xrightarrow{s} denotes strong convergence. In this example, A is a differential operator of common type while B is an operator of multiplication with a highly singular function; the proof makes essential use of the Wiener integral.

In what follows we shall show that if A, B are nonnegative selfadjoint, (1) is true whenever $D(A^{1/2}) \cap D(B^{1/2}) = \{0\}$, which is the case in Chernoff's example. [D(T) denotes the domain of T.] Furthermore, we shall show that (1) is true in the general case if applied to a vector orthogonal to $D(A^{1/2}) \cap D(B^{1/2})$.

We shall consider this problem for a more general sequence

(2) $U_n(t) = [f(tA/n)g(tB/n)]^n$, $n=1, 2, \cdots$, where f, g are taken from the class of real-valued, Borel measurable

functions ϕ on $[0, \infty)$ such that

(3) $0 < \phi(t) \le 1, \quad \phi(0) = 1, \quad \phi'(0) = -1.$

 $\phi(t) = e^{-t}$ belongs to this class. Another example is $\phi(t) = (1+t)^{-1}$, which is perhaps more important in connection with approximation theory in differential equations.

We note that (3) already implies that

 $(4) \qquad \qquad \phi(tA) \xrightarrow{s} 1, \qquad t \downarrow 0,$

whenever A is nonnegative selfadjoint.

To prove our results, we need a mild additional condition for at least one of f and g, namely

(5) $t^{-1}[1-\phi(t)]$ is monotone nonincreasing on $0 \le t \le \infty$.

Note that (5) is again satisfied by $\phi(t) = e^{-t}$ and $(1+t)^{-1}$.

We can now state our main theorem.

Theorem 1. Let A, B be nonnegative selfadjoint operators in a Hilbert space H. Assume that both f and g satisfy (3) and at least one of them satisfies (5). If $v \in H$ is orthogonal to $D(A^{1/2}) \cap D(B^{1/2})$, then $U_n(t)v \rightarrow 0$ as $n \rightarrow \infty$, uniformly on compact sets of t > 0.

Theorem 1 raises the question as to what happens to $U_n(t)v$ if

This work was partly supported by NSF Grant GP37780X.