192. No Free Inverse Semigroup is Orderable^{*)}

By Tôru Saitô

Tokyo Gakugei University

(Comm. by Kenjiro SHODA, M. J. A., Dec. 12, 1974)

A semigroup S is said to be orderable if S admits a simple order to make S a simply ordered semigroup. It is known that every free group is orderable ([1] or [4]). On the other hand, it is shown in [3] that a free commutative idempotent semigroup with r free generators is orderable if and only if $r \leq 2$. In this paper we consider the orderability of free inverse semigroups. Since it is easily shown that a free inverse semigroup with r free generators contains a free commutative idempotent subsemigroup with r free generators, it follows from the above result that a free inverse semigroup with a set of free generators consisting of more than three elements is not orderable. But we have the following stronger result.

Theorem. No free inverse semigroup is orderable.

Proof. By way of contradiction we assume that S is a free inverse semigroup which is at the same time an ordered semigroup. We denote by \leq the natural partial order on the inverse semigroup S. Let F be a set of free generators of S and let $x \in F$. Then, by [5] Corollary 2.5, the inverse subsemigroup $\langle x \rangle$ generated by x is a free inverse semigroup with a free generator x. Also in S the set E of idempotents of S forms a semilattice with respect to the partial order \leq and, by [6] Theorem 3, the semilattice E is a tree semilattice. Now we have

 $x^2x^{-2} \leq xx^{-1}, \qquad xx^{-2}x \leq xx^{-1}$

and so x^2x^{-2} and $xx^{-2}x$ are comparable. If $x^2x^{-2} \le xx^{-2}x$, then $x^2x^{-2} \le xx^{-2}x \le x^{-1}x$, which contradicts [5] Corollary 2.4. Next we suppose $xx^{-2}x \le x^{2}x^{-2}$. Then $xx^{-2}x = (x^2x^{-2})(xx^{-2}x) = x^2x^{-3}x$ and so $x^2 = x(xx^{-2}x)x = x^3x^{-3}x^2$. Hence

 $x^{-2}x^{2} = x^{-2}x^{3}x^{-3}x^{2} = (x^{-2}x^{2})(xx^{-1})(x^{-2}x^{2}) \leq xx^{-1},$

which contradicts again [5] Corollary 2.4.

References

- G. Birkhoff: Review of "Everett, C. J., and Ulam, S., Ordered groups." Math. Rev., 7, 4 (1946).
- [2] A. H. Clifford and G. B. Preston: The algebraic theory of semigroups, Vol. I. Amer. Math. Soc. (1961); Vol. II. Amer. Math. Soc. (1967).

^{*&#}x27; Dedicated to Professor Kiiti Morita on his 60th birthday.