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181. Cohomology of Vector Fields on a Complex Manifold

By Toru TSUJISHITA
University of Tokyo

(Comm. by Kunihiko KODAIRA, M. J. A., Dec. 12, 1974)

§ 1. Let M be a complex manifold. Let .4 denote the space of
smooth vector fields of type (1,0) on M. J is regarded as a Lie algebra
under the usual bracket operation. Recently it is shown that the Lie
algebra structure of /] uniquely determines the complex analytic
structure of M (I. Amemiya [1]), and thus it would be interesting to
calculate the cohomology of the Lie algebra (/] associated with various
representations. In this note, we shall state some results concerning
the cohomology of the Lie algebra 4. Details will appear elsewhere.
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§ 2. We recall here briefly the definition of the cohomology group
of a Lie algebra g associated with a g-module W. Let C?(g; W) denote
the space of alternating p-forms on g with values in the vector space
W for p>0; we put C(g; W)=W and C?(g; W)=0 for p<0. The
coboundary operator d: C?(g; W)—C?*'(g; W) is defined by the follow-
ing formula :
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Xy, -, Xp€8,0eC?(g; W). The p-th cohomology group of this
cochain complex C(g; W)=®,C?(g; W) will be denoted by H?(g; W). If
the g-module W has a ring structure such that X(f¢)=X/)g+ f(Xg)
X eg, f,9¢e W), then the total cohomology H*(g; W)=®,H?(g; W) has
a graded ring structure. (For more details, see [3].)

§ 3. The Lie algebra ./ has a representation on the ring & of
smooth functions on M when the vector fields are identified canoni-
cally with the derivations on the ring &. We shall denote by Ci(_1; F)
the subspace of C2(;F) consisting of the elements o such that
supp (o(X,, - - -, Xp) TN, supp (X)) (X, - -+, X, € A). Furthermore we
shall denote by C%(_A; &F) the subspace of Ci(_1; F) consisting of the
elements » such that, if f e & is anti-holomorphic on an open subset
U of M, then o(fX,, X,, -+, Xp)=fo(X, X;, - - -, X,) on U for any X,
X, Xpedd. If we put CuA; F)=D,CA; F), and Cy(A; F)
=®,C%A; F), then Cu(A; F) and C,(A; F) form a subcomplex of



