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7. On a Property of Quadratic Farey Sequences
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1. Introduction and notations. The well known Farey sequence
of order s on [0, 1] is in reality an ordered list of all zeros of linear
polynomials ax- b with integral coefficients satisfying 0_<_ b a_<_ s.
The quadratic Farey sequence of order s is defined as ordered list
all the real roots of the equation ax2+bx+v--O, which O_<a<=s,
0:/:lc]gs. Recently, H. Brown and K. Mahler study the quadratic
Farey sequence on [0, 1], and give some data via the computer [l].
In this paper, we give a formula to Table II, [1], i.e. the value of the
determinant formed by the coefficients of three consecutive quadratics
at certain rational points.

In this paper itallic letters and letters with a suffix or sign, r*,
etc. denote all integers except x, y. The symbol [q/p] denotes the inte-
gral part of q/p; that is, the integer such that [q/p]<__q/p[q/p]+l.
Put

Ls--((a, k, 1) s>=a>=O, O:/:llls,
N+ --{(1 k)" nl--mk-r Ol<s, Ikl<s)s,r

NT,r--((1, k)" nl--mk--r, O>l>=--s, Ikl<=s}
d(a, r, k, l) d/,(a, r, k, l) (m/n, m/n) the point which (1)

y l/(ax / k) intersects with (2) y--= x I, where * denotes the length of a
vector .. Now we denote an order to the set M,, where M,=N:, or

N[,r. If M,:/:O, (1, k)<(l’, k’)l/l<l/’l and (1, k)-(l’, k’)l=l’. Here we
call (1, k) or maximum in M, when the value Ill is maximum among
the element (1, k) e M,.

In order to obtain the results, we consider fractional functions (1)
y- l/(ax / k) for (a, k, l) e L and the equation (2) y- x. Then, the set
M of all the positive points on [0, 1] which (1) is intersecting with (2)
gives the quadratic Farey sequence of order s. The necessary and
sufficient condition that (1)throws the point (m/n,m/n) is a=-nr/m,
where r=nl-mk, but a-nr/m is not necessary integral number, so,
we must find the fractional function (1) with integral coefficients throw-
ing the nearest point to (m/n, m/n). That is, it is reduced to find two
elements (a, k, l) e L, such that d(a, r, k, l)0 is minimum and d(a, r, k, l)

0 is maximum. Here we call the equation giving this nearest point
smaller (larger) than m/n lower (upper) best approximating equation
with respect to m/n. Our results are given as Theorems 1-3.


