7. On a Property of Quadratic Farey Sequences

By Akiyo Yajima
Department of Mathematics, Hokkaido University, Sapporo, Japan

(Comm. by Kenjiro Shoda, m. J. A., Jan. 13, 1975)
§ 1. Introduction and notations. The well known Farey sequence of order s on $[0,1]$ is in reality an ordered list of all zeros of linear polynomials $a x-b$ with integral coefficients satisfying $0 \leqq b \leqq a \leqq s$. The quadratic Farey sequence of order s is defined as ordered list of all the real roots of the equation $a x^{2}+b x+c=0$, which $0 \leqq a \leqq s,|b| \leqq s$, $0 \neq|c| \leqq s$. Recently, H. Brown and K. Mahler study the quadratic Farey sequence on $[0,1]$, and give some data via the computer [1]. In this paper, we give a formula to Table II, [1], i.e. the value of the determinant formed by the coefficients of three consecutive quadratics at certain rational points.

In this paper itallic letters and letters with a suffix or sign, r_{p}^{*}, l_{p} etc. denote all integers except x, y. The symbol $[q / p]$ denotes the integral part of q / p; that is, the integer such that $[q / p] \leqq q / p<[q / p]+1$. Put
$L_{s}=\{(a, k, l): s \geqq a \geqq 0,0 \neq|l| \leqq s,|k| \leqq s\}$
$N_{s, r}^{+}=\{(l, k): n l-m k=r, 0<l \leqq s,|k| \leqq s\}$
$N_{s, r}^{-}=\{(l, k): n l-m k=r, 0>l \geqq-s,|k| \leqq s\}$
$d(a, r, k, l)=d_{m / n}(a, r, k, l)=|(m / n, m / n)|-\mid$ the point which $y=l /(a x+k)$ intersects with (2) $y=x \mid$, where $|*|$ denotes the length of a vector *. Now we denote an order to the set $M_{s, r}$, where $M_{s, r}=N_{s, r}^{+}$or $N_{s, r}^{-}$. If $M_{s, r} \neq \emptyset,(l, k)<\left(l^{\prime}, k^{\prime}\right) \Leftrightarrow|l|<\left|l^{\prime}\right|$ and $(l, k)=\left(l^{\prime}, k^{\prime}\right) \Leftrightarrow l=l^{\prime}$. Here we call (l, k) or l maximum in $M_{s, r}$ when the value $|l|$ is maximum among the element $(l, k) \in M_{s, r}$.

In order to obtain the results, we consider fractional functions (1) $y=l /(a x+k)$ for $(a, k, l) \in L_{s}$ and the equation (2) $y=x$. Then, the set M_{s} of all the positive points on $[0,1]$ which (1) is intersecting with (2) gives the quadratic Farey sequence of order s. The necessary and sufficient condition that (1) throws the point ($m / n, m / n$) is $a=n r / m^{2}$, where $r=n l-m k$, but $a=n r / m^{2}$ is not necessary integral number, so, we must find the fractional function (1) with integral coefficients throwing the nearest point to ($m / n, m / n$). That is, it is reduced to find two elements $(a, k, l) \in L_{s}$ such that $d(a, r, k, l)>0$ is minimum and $d(a, r, k, l)$ <0 is maximum. Here we call the equation giving this nearest point smaller (larger) than m / n lower (upper) best approximating equation with respect to m / n. Our results are given as Theorems 1-3.

