6. A Note on Partially Hypoelliptic Operators

By Masatake Miyake
Department of Mathematics, University of Tsukuba
(Comm. by Kôsaku Yosida, M. J. A., Jan. 13, 1975)

1. Introduction. We shall study in this note the hypoellipticity of the following partial differential operator,
(1.1) $\quad P\left(t ; D_{x}, \partial_{t}\right)=\partial_{t}+a i t^{l^{l}} D_{x}^{m}+b t^{l_{1}} D_{x}^{2 n}, \quad(a, b \in \boldsymbol{R}, i=\sqrt{-1})$, where $\partial_{t}=\partial / \partial t, D_{x}=-i \partial / \partial x$ and $(x, t) \in \boldsymbol{R}_{x} \times(-1,1)$.

Concerning hypoelliptic operators various studies have been made by many authors. One of the recent developments is that of degenerate operators. In this case almost studies are concentrated in the relation between the order of derivative and that of degeneracy of the coefficient, and there arise interesting properties which do not occur in the regular case. The difficulties lie on how to be dissolved the singularity appeared on a submanifold (or a subset) where the operator degenerates (see [1]~[9] and those references).

Contrary to this point of view, our purpose in this note is to show that under some conditions the operator (1.1) is regular (in some sense) on $t=0$, but is not regular on $t=t_{0} \neq 0$.

Let us now present an exact statement of our result. For this purpose we assume,

$$
\begin{cases}\text { (i) } & m>2 n, \\ \text { (ii) } & l_{0} \text { and } l_{1} \text { are a non-negative integer and a non-negative } \\ & \text { even integer respectively, } \tag{1.2}\\ \text { (iii) } & a \cdot b \neq 0, \\ \text { (iv) } & (m-1) /\left(l_{0}+1\right)<2 n /\left(l_{1}+1\right) .\end{cases}
$$

Then we have
Theorem. Under the assumptions (1.2) the operator given by (1.1) has the following properties;
(i) P and its adjoint ${ }^{t} P$ are hypoelliptic on $t=0$ with respect to x, i.e., if $P u \in C^{\infty}\left(I_{x} \times J_{t}\right)$ and $u \in \mathcal{E}^{0}\left(J_{t} ; \mathscr{D}^{\prime}\left(I_{x}\right)\right)$, then $u(x, 0) \in C^{\infty}\left(I_{x}\right)$, where $I_{x}=(-\alpha, \alpha), J_{t}=(-\beta, \beta)$. It also holds for ${ }^{t} P$.
(ii) P and ${ }^{t} P$ are not hypoelliptic on $t=t_{0} \neq 0$ with respect to x.

Remark. (i) If m, l_{0} and l_{1} are even integers, $\operatorname{Re} a i>0$ and $\operatorname{Re} b>0$ (or if m and l_{0} are even integers, $\operatorname{Re} a i>0$ and $m /\left(l_{0}+1\right)$ $\geqq 2 n /\left(l_{1}+1\right)$), then P and ${ }^{t} P$ are hypoelliptic in $R_{x} \times(-1,1)$.
(ii) If m is an even integer, l_{0} and l_{1} are odd integers, Re $a i>0$ and $\operatorname{Re} b>0$ (or if m is an even integer, l_{0} is an odd integer, $\operatorname{Re} a i>0$

