5. The Determinant of Matrices of Pseudo-differential Operators

By Mikio Sato*) and Masaki Kashiwara**)

(Comm. by Kôsaku Yosida, m. J. A., Jan. 13, 1975)

The purpose of this paper is to give a definition of the determinant of matrices of pseudo-differential operators (of finite order) and to establish some of its properties. Let X be a complex manifold, and $P^{*} X$ (resp. $T^{*} X$) be its cotangent projective (resp. vector) bundle. The projection from $T^{*} X-X$ onto $P^{*} X$ is denoted by γ.

Our result is the following.
Theorem. For every matrix $A(x, D)=\left(A_{i j}(x, D)\right)_{1 \leq i, j \leq N}$, whose entries $A_{i j}(x, D)$ are pseudo-differential operators defined on an open set $U \subset P^{*} X$, one can canonically associate $\operatorname{det} A(x, D)$, which is a homogeneous holomorphic function defined on $\gamma^{-1}(U)$, and possesses the following properties
a) $\operatorname{det} A(x, D) B(x, D)=\operatorname{det} A(x, D) \cdot \operatorname{det} B(x, D)$
b) $\operatorname{det}(A(x, D) \oplus B(x, D))=\operatorname{det} A(x, D) \cdot \operatorname{det} B(x, D)$
c) if there are integers m_{i} and n_{j} such that order $A_{i j}(x, D) \leq m_{i}$ $+n_{j}$ and $\operatorname{det}\left(\sigma_{m_{i}+n_{j}}(A(x, D))\right.$ does not vanish identically, then
$\operatorname{det} A(x, D)=\operatorname{det}\left(\sigma_{m_{i+n}}\left(A_{i, j}\right)\right)$,
where $\sigma_{m_{i+n}}\left(A_{i j}\right)$ denotes the principal symbol of $A_{i j}$ (which is 0 if $A_{i j}$ is of the order $\leq m_{i}+n_{j}-1$). In particular, our determinant reduces to the concept of the principal symbol, if the size N is 1 .
d) $A(x, D)$ is invertible if and only if $\operatorname{det} A(x, D)$ vanishes nowhere.
e) if $P(x, D)$ is a pseudo-differential operator such that $[P, A]=0$, then $\{\sigma(P), \operatorname{det} A\}=0$.

Corollary. If $A(x, D)$ is a matrix of differential operators, then $\operatorname{det} A(x, D)$ is a homogeneous polynomial on the fiber coordinate ξ.

Corollary is an immediate consequence of Theorem. In fact, by adding an auxiliary parameter t, one can regard $A(x, D)$ as a pseudodifferential operator defined on a (t, x)-space $C \times X$. Therefore, $\operatorname{det} A(x, D)$ is defined all over $T^{*} X$, which implies $\operatorname{det} A(x, D)$ is a polynomial on ξ.

In order to prove Theorem, we prepare the following lemma.
Lemma (see [2]). Let K be a (not necessarily commutative) field, $K=\bigcup_{m \in Z} K_{m}$ be a filtration of K satisfying

[^0]
[^0]: *) Research Institute of Mathematical Sciences, Kyoto University.
 **) Department of Mathematics, Faculty of Sciences, Nagoya University.

