No. 1]

2. Remarks on a Totally Real Submanifold

By Seiichi YAMAGUCHI and Toshihiko IKAWA Department of Mathematics, Science University of Tokyo

(Comm. by Kinjirô KUNUGI, M. J. A., Jan. 13, 1975)

§ 1. Introduction. K. Yano and S. Ishihara [8] and J. Erbacher [3] have determined the submanifold M of non-negative sectional curvature in the Euclidean space or in the sphere with constant mean curvature, such that M has a constant scalar curvature and a flat normal connection.

Recently, C. S. Houh [4], S. T. Yau [9], and B. Y. Chen and K. Ogiue [2] have investigated totally real submanifolds in a Kähler manifold with constant holomorphic sectional curvature c.

On the other hand, the authors [5]-[7] studied C-totally real submanifolds in a Sasakian manifold with constant ϕ -holomorphic sectional curvature. In particular, we have dealt with C-totally real submanifolds with flat normal connection in [6].

The purpose of this paper is to obtain the following:

Theorem. Let M^n be a totally real submanifold in a Kähler manifold \overline{M}^{2n} . A necessary and sufficient condition in order that the normal connection is flat is that the submanifold M^n is flat.

§ 2. Preliminaries. Let M^n be a submanifold immersed in a Riemannian manifold \overline{M}^{n+p} . Let \langle , \rangle be the metric tensor field on \overline{M}^{n+p} as well as the metric tensor induced on M^n . We denote by \overline{P} the covariant differentiation in \overline{M}^{n+p} and \overline{V} the covariant differentiation in M^n determined by the induced metric on M^n . Let $\mathfrak{X}(\overline{M})$ (resp. $\mathfrak{X}(M)$) be the Lie algebra of vector fields on \overline{M} (resp. M) and $\mathfrak{X}^{\perp}(M)$ the set of all vector fields normal to M^n .

The Gauss-Weingarten formulas are given by

(2.1) $\overline{\nabla}_X Y = \nabla_X Y + B(X, Y),$

(2.2) $\overline{V}_X N = -A^N(X) + D_X N, \quad X, Y \in \mathfrak{X}(M), \quad N \in \mathfrak{X}^{\perp}(M),$

where $\langle B(X, Y), N \rangle = \langle A^{N}(X), Y \rangle$ and $D_{X}N$ is the covariant derivative of the normal connection. A and B are called the second fundamental form of M.

The curvature tensors associated with $\overline{V}, \overline{V}, D$ are defined by the followings respectively:

(2.3)

$$R(X, Y) = [\mathcal{V}_{X}, \mathcal{V}_{Y}] - \mathcal{V}_{[X,Y]},$$

$$R(X, Y) = [\mathcal{V}_{X}, \mathcal{V}_{Y}] - \mathcal{V}_{[X,Y]},$$

$$R^{\perp}(X, Y) = [D_{X}, D_{Y}] - D_{[X,Y]}.$$

If the curvature tensor R^{\perp} of the normal connection D vanishes, then