2. Remarks on a Totally Real Submanifold

By Seiichi Yamaguchi and Toshihiko Ikawa
Department of Mathematics, Science University of Tokyo
(Comm. by Kinjirô Kunugı, m. J. A., Jan. 13, 1975)

§ 1. Introduction. K. Yano and S. Ishihara [8] and J. Erbacher [3] have determined the submanifold M of non-negative sectional curvature in the Euclidean space or in the sphere with constant mean curvature, such that M has a constant scalar curvature and a flat normal connection.

Recently, C. S. Houh [4], S. T. Yau [9], and B. Y. Chen and K. Ogiue [2] have investigated totally real submanifolds in a Kähler manifold with constant holomorphic sectional curvature c.

On the other hand, the authors [5]-[7] studied C-totally real submanifolds in a Sasakian manifold with constant ϕ-holomorphic sectional curvature. In particular, we have dealt with C-totally real submanifolds with flat normal connection in [6].

The purpose of this paper is to obtain the following:
Theorem. Let M^{n} be a totally real submanifold in a Kähler manifold $\bar{M}^{2 n}$. A necessary and sufficient condition in order that the normal connection is flat is that the submanifold M^{n} is flat.
§ 2. Preliminaries. Let M^{n} be a submanifold immersed in a Riemannian manifold \bar{M}^{n+p}. Let \langle,$\rangle be the metric tensor field on$ \bar{M}^{n+p} as well as the metric tensor induced on M^{n}. We denote by \bar{V} the covariant differentiation in \bar{M}^{n+p} and ∇ the covariant differentiation in M^{n} determined by the induced metric on M^{n}. Let $\mathfrak{X}(\bar{M})$ (resp. $\mathfrak{X}(M)$) be the Lie algebra of vector fields on \bar{M} (resp. M) and $\mathfrak{X} \perp(M)$ the set of all vector fields normal to M^{n}.

The Gauss-Weingarten formulas are given by

$$
\begin{equation*}
\bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\bar{V}_{X} N=-A^{N}(X)+D_{X} N, \quad X, Y \in \mathfrak{X}(M), \quad N \in \mathfrak{X}^{\perp}(M), \tag{2.2}
\end{equation*}
$$ where $\langle B(X, Y), N\rangle=\left\langle A^{N}(X), Y\right\rangle$ and $D_{X} N$ is the covariant derivative of the normal connection. A and B are called the second fundamental form of M.

The curvature tensors associated with $\overline{\bar{V}}, \nabla, D$ are defined by the followings respectively:

$$
\begin{align*}
\bar{R}(X, Y) & =\left[\bar{\nabla}_{X}, \bar{V}_{Y}\right]-\bar{V}_{[X, Y]}, \\
R(X, Y) & =\left[\nabla_{X}, \nabla_{Y}\right]-\nabla_{[X, Y]}, \tag{2.3}\\
R^{\perp}(X, Y) & =\left[D_{X}, D_{Y}\right]-D_{[X, Y]} .
\end{align*}
$$

If the curvature tensor R^{\perp} of the normal connection D vanishes, then

