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1. Introduction. K. Yano and S. Ishihara [8] and J. Erbacher
[3] have determined the submanifold M of non-negative sectional
curvature in the Euclidean space or in the sphere with constant mean
curvature, such that M has a constant scalar curvature and a flat
normal connection.

Recently, C. S. Houh [4], S. T. Yau [9], and B. Y. Chen and
K. Ogiue [2] have investigated totally real submanifolds in a Kihler
manifold with constant holomorphic sectional curvature c.

On the other hand, the authors [5]-[7] studied C-totally real sub-
manifolds in a Sasakian manifold with constant -holomorphic sectional
curvature. In particular, we have dealt with C-totally real submani-
folds with flat normal connection in [6].

The purpose of this paper is to obtain the following"
Theorem. Let M be a totally real submanifold in a Kihler mani-

fold. A necessary and sufficient condition in order that the normal
connection is fiat is that the submanifold M is fiat.

2. Preliminaries. Let M be a submanifold immersed in a
Riemannian manifold /n/. Let (, } be the metric tensor field on
// as well as the metric tensor induced on Mn. We denote by I the
covariant differentiation in/r/ and/ the covariant differentiation in
Mn determined by the induced metric on M. Let (M) (resp. (M))
be the Lie algebra of vector fields on r (resp. M) and +/-(M) the set of
all vector fields normal to Mn.

The Gauss-Weingarten formulas are given by

(2.1) xY-’xY+B(X, Y),
(2.2) xN----AN(X)+DxN, X, Y e (M), N e Y.+/-(M),
where (B(X, Y),N)=(A(X), Y) and DzN is the covariant derivative
of the normal connection. A and B are called the second fundamental
form of M.

The curvature tensors associated with ,/, D are defined by the
followings respectively"

(X, Y) [,]-,,
(2.3) R(X, Y)-[x, ’r]--cx,v,

R+/-(X, Y)=[Dx, Dv]--Dx,r.
If the curvature tensor R+/- of the normal connection D vanishes, then


