26. On Odd Type Galois Extension with Involution of Semi-local Rings*'

By Teruo Kanzaki and Kazuo Kitamura
Osaka City University, Osaka Kyoiku University
(Comm. by Kenjiro Shoda, m. J. A., Feb. 12, 1975)

1. Introduction. In [3], the notion of odd type G-Galois extension with involution was defined as follows: If $A \supset B$ is a G-Galois extension and A has an involution $A \rightarrow A ; a \backsim \bar{a}$, which is compatible with every element σ of G, i.e. $\sigma(\bar{a})=\overline{\sigma(a)}$ for all $a \in A$, then $A \supset B$ is called a G-Galois extension with involution. A G-Galois extension with involution $A \supset B$ is called odd type, if A has an element u satisfying the following conditions;
1) u is an invertible element in the fixed subring of the center of A by the involution,
2) a hermitian left B-module (A, b_{t}^{u}) defined by $b_{t}^{u}: A \times A \rightarrow B$; $(x, y) \backsim t_{G}(u x \bar{y})=\sum_{\sigma \in G} \sigma(u x \bar{y})$, is isometric to an orthogonal sum of $\langle 1\rangle$ and a metabolic B-module.

If A, B are fields and $A \supset B$ is a G-Galois extension with involution, it was known that $A \supset B$ is odd type if and only if the order of G is odd. In this note, we want to extend this to semi-local rings. When $A \supset B$ is a G-Galois extension with involution of commutative rings, it is easily seen that an odd type G-Galois extension implies $|G|=$ odd. For semi-local rings A and B, we shall show that the converse holds in the following cases:
I. The involution is trivial and $|B / \mathfrak{m}| \geqq|G|$ for every maximal ideal m of B, where $|B / \mathfrak{m}|$ and $|G|$ denote numbers of elements of B / \mathfrak{m} and G, respectively.
II. The involution is non-trivial and for each maximal ideal \mathfrak{m} of B the following conditions are satisfied;

1) $|B / \mathfrak{m}| \geqq 2|G|, 2)$ if $\bar{m}=\mathfrak{m}$, the involution induces a non-trivial one on $A / \mathrm{m} A$.
III. B is a local ring with maximal ideal \mathfrak{m}, and the involution is non-trivial on A but induces a trivial one on $A / \mathfrak{m} A$. Furthermore, $|B / \mathfrak{m}| \geqq|G|$ and B / \mathfrak{m} is either a field with the characteristic not 2 or a finite field. Throughout this paper, every ring is a commutative semilocal ring with identity and $A \supset B$ denotes a G-Galois extension with involution.
2. Galois extension with trivial involution. Lemma 1. Let
[^0]
[^0]: *) Dedicated to Professor Mutsuo Takahashi on his 60th birthday.

