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1o In Table I, we give the conductor of all the elliptic curves
defined over Q, the rational number field, with complex multiplication
with the ]-invariants in Q. In Table II, we give all the elliptic curves
defined over Q of prime conductor N=<101, up to isogeny, under Well’s
conjecture for F0(N).

2. Let E be an elliptic curve over Q with complex multiplication.
Then End (E)(R)Q--K must be an imaginary quadratic field and End (E)
is a subring of R, the ring of integers of K, with finite index. Such
a subring is of the form Rr--Z/fR, where Z is the ring of rational
integers and f is the conductor of Rr. Then End (E) has the class
number one and there are 13 such Rr’s. Hence there are 13 corre-
sponding elliptic curves and the ]-invariants of these curves are well-
known ([1]), so we can write explicitly their Weierstrass (not always
minimal) models. The conductor of these 13 curves can be calculated
as Table I below. As is well-known, the reduction at a prime (#2, 3)
dividing the conductor N of an elliptic curve with complex multiplica-
tion is an additive type, that is to say, ord N=2 if p2, 3, therefore
it is sufficient to treat the 2 and 3-2actors of N in order to calculate N
explicitly. Hence in the last column in Table I, we give only the
number 2, 3% where N---I-[ P.
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Table I

K model

A 26D8, 128
(D: fourth power free)

z/=29D% =208

Q [/33] y2+x8+D=O
z/=-2438D2,
(D sixth power free)

2,3-factors of N

2 if D=3 or D/4=l
26 if D=I or D/4=3
2 if 2lID or 28 D

2

223 if i) D" cubic,
ii) D=8 and iii)
or 38lID

243 if i) D" cubic,
ii) D=I and iii)85D
or 38lID


