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1o Introduction. This paper is concerned with groups which act
freely on closed manifolds." Two theorems will be proved as applica-
tion of theorems in [6].

For any odd. integer r, let P"(48r) denote the group with generators
X, Y, Z, A and relations

X2= y2=z2=(XY)2, A3"=1,
ZXZ-I= YX, ZYZ-I= Y-, AXA-= Y,
AYA-=Xy, ZAZ-=A-.

J. Milnor [5] asks if the group P"(48r) can act freely on the 3-sphere.
We shall prove

Theorem 1. If r> 1, the group P"(48r) can not act freely on any
closed manifold M having the mod 2 homology of the (8t/3)-sphere
(>=o).

We note that the assertion of Theorem 1 is stated in Corollary 4.17
of [4] whose proof is not correct if r is a power of 3. (See also [6].)

F.B. Fuller [3] proves the ollowing Let X be a compact polyhedron
such that the Euler characteristic is not zero, and let h" X--X be a
homeomorphism. Then the iterate h or some i1 has a fixed point.
This shows that if G is a group aeting freely on X then any element
of G has finite order. By proving a theorem similar to the Fuller
theorem, we shall, show

Theorem 2. Let M be a (2n+ 1)-dimensional closed manifold such
that the rood 2 semichracteristic (M; Z) is not zero, and let G be a
group acting freely on M. Then, for any T e G of order 2 and for any
S e G, the commutator [S, T] has finite order.

2. Proof of Theorem 1. It follows that the subgroup in P"(48r)
generated by {X, Y} is the quaternion group Q(8) o order 8 and it is a
normal subgroup. We see also that the quotient group P"(48r)/Q(8)
is generated by the eoset T=[Z] and S--[A] with relations T=(TS)
--S-- 1, and hence it is the dihedral group D(6r) of order 6r.

Suppose we have a free action of P"(48r) on M. Let N=M/Q(8)
denote the quotient manifold of M under the action of Q(8). Then there
is a natural ree action of D(6r) on N. Since the homology group

1) In this paper we work in the topological category.


