36. Groups which Act Freely on Manifolds

By Minoru Nakaoka
Department of Mathematics, Osaka University
(Comm. by Kenjiro Shoda, M. J. A., March 12, 1975)

1. Introduction. This paper is concerned with groups which act freely on closed manifolds. ${ }^{17}$ Two theorems will be proved as application of theorems in [6].

For any odd integer r, let $P^{\prime \prime}(48 r)$ denote the group with generators X, Y, Z, A and relations

$$
\begin{aligned}
& X^{2}=Y^{2}=Z^{2}=(X Y)^{2}, \quad A^{3 r}=1, \\
& Z X Z^{-1}=Y X, Z Y Z^{-1}=Y^{-1}, \quad A X A^{-1}=Y, \\
& A Y A^{-1}=X Y, \quad Z A Z^{-1}=A^{-1} .
\end{aligned}
$$

J. Milnor [5] asks if the group $P^{\prime \prime}(48 r)$ can act freely on the 3 -sphere. We shall prove

Theorem 1. If $r>1$, the group $P^{\prime \prime}(48 r)$ can not act freely on any closed manifold M having the $\bmod 2$ homology of the $(8 t+3)$-sphere ($t \geqq 0$).

We note that the assertion of Theorem 1 is stated in Corollary 4.17 of [4] whose proof is not correct if r is a power of 3. (See also [6].)
F.B. Fuller [3] proves the following : Let X be a compact polyhedron such that the Euler characteristic is not zero, and let $h: X \rightarrow X$ be a homeomorphism. Then the iterate h^{i} for some $i \geqq 1$ has a fixed point. This shows that if G is a group acting freely on X then any element of G has finite order. By proving a theorem similar to the Fuller theorem, we shall show

Theorem 2. Let M be a $(2 n+1)$-dimensional closed manifold such that the $\bmod 2$ semichracteristic $\hat{\chi}\left(M ; Z_{2}\right)$ is not zero, and let G be a group acting freely on M. Then, for any $T \in G$ of order 2 and for any $S \in G$, the commutator $[S, T]$ has finite order.
2. Proof of Theorem 1. It follows that the subgroup in $P^{\prime \prime}(48 r)$ generated by $\{X, Y\}$ is the quaternion group $Q(8)$ of order 8 and it is a normal subgroup. We see also that the quotient group $P^{\prime \prime}(48 r) / Q(8)$ is generated by the coset $T=[Z]$ and $S=[A]$ with relations $T^{2}=(T S)^{2}$ $=S^{3 r}=1$, and hence it is the dihedral group $D(6 r)$ of order $6 r$.

Suppose we have a free action of $P^{\prime \prime}(48 r)$ on M. Let $N=M / Q(8)$ denote the quotient manifold of M under the action of $Q(8)$. Then there is a natural free action of $D(6 r)$ on N. Since the homology group

1) In this paper we work in the topological category.
