35. On Stationary Point Sets of $\left(\mathrm{Z}_{2}\right)^{k}$-Manifolds

By Katsuhiro Komiya
Yamaguchi University
(Comm. by Kenjiro Shoda, m. J. A., March 12, 1975)

1. Definitions. In order to state the results we define some notions.

Let G be a finite group, and $\mathscr{F}, \mathscr{F}^{\prime}$ be families of subgroups of G with $\mathscr{F} \supset \mathscr{F}^{\prime}$. An ($\left.\mathcal{F}, \mathscr{F}^{\prime}\right)$-free G-manifold is a pair (M, φ) consisting of a compact differentiable manifold M and a differentiable G-action $\varphi: G \times M \rightarrow M$ on M such that
(i) if $x \in M$, then the isotropy group $G_{x} \in \mathscr{F}$, and
(ii) if $x \in \partial M$, then $G_{x} \in \mathscr{F}^{\prime}$.

We may define the unoriented bordism module $\mathfrak{n}_{*}\left(G ; \mathscr{F}, \mathcal{F}^{\prime}\right)$, over the unoriented cobordism ring \mathfrak{N}_{*}, which consists of bordism classes of (FF, \mathscr{F}^{\prime})-free G-manifolds (see Stong [2]). If \mathscr{F}^{\prime} is empty, we write $\mathfrak{n}_{*}(G ; \mathscr{F})$ for this module.

Let F be the stationary point set of a G-mainfold (M, φ), and $F=\bigcup_{i} F_{i}$ be the decomposition by the connected components. Let ($D\left(\nu_{i}\right), \varphi_{i}$) be the G-manifold consisting of the normal disc bundle $D\left(\nu_{i}\right)$ of F_{i} and the G-action φ_{i} induced by φ. We suppose that any connected component F_{i} satisfies

$$
\left[D\left(\nu_{i}\right), \varphi_{i}\right]=\left[F_{i}\right]\left[D\left(V_{i}\right), \Psi_{i}\right]
$$

in $\mathfrak{n}_{*}\left(G ; \mathscr{F}_{A}, \mathscr{F}_{P}\right)$ for some positive dimensional G-representation (V_{i}, ψ_{i}), where \mathscr{F}_{A} (resp., \mathscr{F}_{P}) is the family of all subgroups (resp., all proper subgroups) of G and $D\left(V_{i}\right)$ is the unit disc of V_{i}. We say in this case that F has a trivial normal bundle in the weak sense. When we further suppose that $\operatorname{dim} F_{i}=\operatorname{dim} F_{j}$ implies $\left(V_{i}, \psi_{i}\right) \cong\left(V_{j}, \psi_{j}\right)$ as G-representations, we say that F has a trivial normal bundle (in the sense of Conner-Floyd [1; §42]).
2. Statement of results. In this note we study the case in which G is $\left(Z_{2}\right)^{k}$, the direct product of k copies of the multiplicative cyclic group $Z_{2}=\{1,-1\}$. We obtain the following results :

Theorem 1. If the stationary point set F of a closed $\left(Z_{2}\right)^{k}$-manifold (M, φ) has a trivial normal bundle, then we obtain
(i) $[F]=0$ in \mathfrak{R}_{*}, and
(ii) $[M, \varphi]=0$ in $\mathfrak{R}_{*}\left(\left(Z_{2}\right)^{k} ; \mathscr{F}_{A}\right)$.

Corollary 2 (Conner-Floyd [1: (31.3)]). The stationary point set F of a positive dimensional closed $\left(Z_{2}\right)^{k}$-manifold can not consist of one point.

