35. On Stationary Point Sets of $(\mathbb{Z}_2)^k$ -Manifolds

By Katsuhiro KOMIYA Yamaguchi University

(Comm. by Kenjiro SHODA, M. J. A., March 12, 1975)

1. Definitions. In order to state the results we define some notions.

Let G be a finite group, and $\mathcal{F}, \mathcal{F}'$ be families of subgroups of G with $\mathcal{F} \supset \mathcal{F}'$. An $(\mathcal{F}, \mathcal{F}')$ -free G-manifold is a pair (M, φ) consisting of a compact differentiable manifold M and a differentiable G-action $\varphi: G \times M \rightarrow M$ on M such that

(i) if $x \in M$, then the isotropy group $G_x \in \mathcal{F}$, and

(ii) if $x \in \partial M$, then $G_x \in \mathcal{F}'$.

We may define the unoriented bordism module $\mathfrak{N}_*(G; \mathcal{F}, \mathcal{F}')$, over the unoriented cobordism ring \mathfrak{N}_* , which consists of bordism classes of $(\mathcal{F}, \mathcal{F}')$ -free *G*-manifolds (see Stong [2]). If \mathcal{F}' is empty, we write $\mathfrak{N}_*(G; \mathcal{F})$ for this module.

Let F be the stationary point set of a G-mainfold (M, φ) , and $F = \bigcup_i F_i$ be the decomposition by the connected components. Let $(D(\nu_i), \varphi_i)$ be the G-manifold consisting of the normal disc bundle $D(\nu_i)$ of F_i and the G-action φ_i induced by φ . We suppose that any connected component F_i satisfies

$$[D(\nu_i), \varphi_i] = [F_i][D(V_i), \Psi_i]$$

in $\mathfrak{N}_*(G; \mathcal{F}_A, \mathcal{F}_P)$ for some positive dimensional *G*-representation (V_i, ψ_i) , where \mathcal{F}_A (resp., \mathcal{F}_P) is the family of all subgroups (resp., all proper subgroups) of *G* and $D(V_i)$ is the unit disc of V_i . We say in this case that *F* has a trivial normal bundle in the weak sense. When we further suppose that dim $F_i = \dim F_j$ implies $(V_i, \psi_i) \cong (V_j, \psi_j)$ as *G*-representations, we say that *F* has a trivial normal bundle (in the sense of Conner-Floyd [1; § 42]).

2. Statement of results. In this note we study the case in which G is $(Z_2)^k$, the direct product of k copies of the multiplicative cyclic group $Z_2 = \{1, -1\}$. We obtain the following results:

Theorem 1. If the stationary point set F of a closed $(Z_2)^k$ -manifold (M, φ) has a trivial normal bundle, then we obtain

(i) [F]=0 in \mathfrak{N}_* , and

(ii) $[M, \varphi] = 0$ in $\mathfrak{N}_*((\mathbb{Z}_2)^k; \mathcal{F}_A)$.

Corollary 2 (Conner-Floyd [1: (31.3)]). The stationary point set F of a positive dimensional closed $(Z_2)^k$ -manifold can not consist of one point.