33. Local Solvability of a Class of Partial Differential Equations with Multiple Characteristics

By Waichirô MATSUMOTO Kyoto University (Comm. by Kôsaku Yosida, m. j. a., March 12, 1975)

§ 1. Introduction. The present paper is concerned with local solvability for the following type of operators with C^{∞} coefficients

 $L(x; \partial_x) = P(x; \partial_x) + Q(x; \partial_x) + R(x; \partial_x)$ $(x \in \mathbb{R}^n)$, where $P(x; \partial_x)$, $Q(x; \partial_x)$, $R(x; \partial_x)$ are the principal part of order s, the homogeneous part of order s-1, and the part of order s-2, respectively. When $P(x; \partial_x)$ is of principal type, L. Nirenberg-F. Treves [3] and R. Beals-G. Fefferman [1] established the necessary and sufficient condition for local solvability. On the other hand, when $P(x; \partial_x)$ has double characteristics, a necessary condition is given by F. Cardoso-F. Treves [2]. In that paper they pointed out that the subprincipal part of $L(x; \partial_x)$ plays an important role.

In this paper, we give a sufficient condition under some hypotheses not only for the principal part but for the subprincipal part. A forthcoming article will give a detailed proof. Let V_x be a neighbourhood of the origin in \mathbb{R}^n_x , and S^{n-1}_{ε} be the unit sphere in $\mathbb{R}^n_{\varepsilon}$. For the principal symbol $P(x;\xi)$, we assume that the characteristics of $P(x;\xi)$ have locally constant multiplicities in $V_x \times S^{n-1}_{\varepsilon}$. Under this assumption when we divide $J = \{(x,\xi) \in V_x \times S^{n-1}_{\varepsilon} | P(x;\xi) = 0\}$ into the connected components $\{J_k\}$, $P(x;\xi)$ vanishes of constant order m_k on J_k . Moreover, for simplicity, we assume that $P(x;\partial_x)$ has real coefficients.

§2. Statement of the theorem. Let us put

$$J^{(2)} = \{ (x, \xi) \in J \mid \text{grad}_{\xi} P(x; \xi) = 0 \}$$

and divide it into the connected components $\{J_k^{(2)}\}$. For the subprincipal symbol

$$\Pi(x;\xi) = Q(x;\xi) - \frac{1}{2} \sum_{j=1}^{n} \frac{\partial^2}{\partial_{x_j} \partial_{\xi_j}} P(x;\xi),$$

we assume that on each $J_{k}^{(2)}$, $\Pi(x;\xi)$ satisfies one of the following conditions:

- (A) Re $\Pi(x; \xi) \neq 0$ on $J_k^{(2)}$.
- (B) $\Pi(x;\xi) \equiv 0$ on $J_k^{(2)}$ and if $m_k \ge 3$ moreover grad_{ξ} Re $\Pi(x;\xi) \ne 0$ on $J_k^{(2)}$.

When the above assumptions are satisfied, we have the following proposition.

Proposition. For arbitrary real number l, there exists a neigh-