33. Local Solvability of a Class of Partial Differential Equations with Multiple Characteristics

By Waichirô Matsumoto
Kyoto University
(Comm. by Kôsaku Yosida, m. J. A., March 12, 1975)

§ 1. Introduction. The present paper is concerned with local solvability for the following type of operators with C^{∞} coefficients

$$
L\left(x ; \partial_{x}\right)=P\left(x ; \partial_{x}\right)+Q\left(x ; \partial_{x}\right)+R\left(x ; \partial_{x}\right) \quad\left(x \in \boldsymbol{R}^{n}\right),
$$

where $P\left(x ; \partial_{x}\right), Q\left(x ; \partial_{x}\right), R\left(x ; \partial_{x}\right)$ are the principal part of order s, the homogeneous part of order $s-1$, and the part of order $s-2$, respectively. When $P\left(x ; \partial_{x}\right)$ is of principal type, L. Nirenberg-F. Treves [3] and R. Beals-G. Fefferman [1] established the necessary and sufficient condition for local solvability. On the other hand, when $P\left(x ; \partial_{x}\right)$ has double characteristics, a necessary condition is given by F. CardosoF. Treves [2]. In that paper they pointed out that the subprincipal part of $L\left(x ; \partial_{x}\right)$ plays an important role.

In this paper, we give a sufficient condition under some hypotheses not only for the principal part but for the subprincipal part. A forthcoming article will give a detailed proof. Let V_{x} be a neighbourhood of the origin in \boldsymbol{R}_{x}^{n}, and $\boldsymbol{S}_{\xi}^{n-1}$ be the unit sphere in \boldsymbol{R}_{ξ}^{n}. For the principal symbol $P(x ; \xi)$, we assume that the characteristics of $P(x ; \xi)$ have locally constant multiplicities in $V_{x} \times \boldsymbol{S}_{\xi}^{n-1}$. Under this assumption when we divide $J=\left\{(x, \xi) \in V_{x} \times S_{\xi}^{n-1} \mid P(x ; \xi)=0\right\}$ into the connected components $\left\{J_{k}\right\}, P(x ; \xi)$ vanishes of constant order m_{k} on J_{k}. Moreover, for simplicity, we assume that $P\left(x ; \partial_{x}\right)$ has real coefficients.
§ 2. Statement of the theorem. Let us put

$$
J^{(2)}=\left\{(x, \xi) \in J \mid \operatorname{grad}_{\xi} P(x ; \xi)=0\right\}
$$

and divide it into the connected components $\left\{J_{k}^{(2)}\right\}$. For the subprincipal symbol

$$
\Pi(x ; \xi)=Q(x ; \xi)-\frac{1}{2} \sum_{j=1}^{n} \frac{\partial^{2}}{\partial_{x_{j}} \partial_{\xi_{j}}} P(x ; \xi),
$$

we assume that on each $J_{k}^{(2)}, \Pi(x ; \xi)$ satisfies one of the following conditions:
(A) $\operatorname{Re} \Pi(x ; \xi) \neq 0$ on $J_{k}^{(2)}$.
(B) $\Pi(x ; \xi) \equiv 0$ on $J_{k}^{(2)}$ and if $m_{k} \geqslant 3$ moreover $\operatorname{grad}_{\xi} \operatorname{Re} \Pi(x ; \xi) \neq 0$ on $J_{k}^{(2)}$.
When the above assumptions are satisfied, we have the following proposition.

Proposition. For arbitrary real number l, there exists a neigh-

