58. Micro-local Properties of $\prod_{j=1}^{n} f_{j+}^{s, *}$

By Masaki Kashiwara**) and Takahiro Kawai***)
(Comm. by Kôsaku Yosida, M. J. A., April 12, 1975)

In connection with Sato's conjecture in S-matrix theory it has become important to investigate the micro-local properties of the function of the form $\prod_{j=1}^{n} f_{j+}^{s,}$. See Kawai-Stapp [7] for example. The purpose of this note is to present some basic theorems on the microlocal structure of the function of the above form. The application of the results to the investigation of b-functions will be given somewhere else by the first author. See Kawai-Stapp [7] for the application of the results of this note to the micro-local study of the S-matrix and related functions.

The essential tool in our proof is the desingularization theorem of Hironaka (Hironaka-Lejeune-Teissier [5]). The usefulness of the desingularization theorem in investigating analytic properties of $\prod_{j=1}^{n} f_{j+}^{s_{j}}$ was first conjectured by Professor I. M. Gel'fand. See BernsteinGel'fand [3] and Atiyah [1]. See Björk [4] also. Note that Bernstein [2] proved Theorem 1 without making use of the desingularization theorem in the case when $n=1$ and f_{1} is a polynomial.

In this note we use the same notations as in Sato-Kawai-Kashiwara [8] and Kashiwara [6] and do not repeat their definitions.

Theorem 1. Let $f_{j}(j=1, \cdots, n)$ be real valued real analytic functions defined on a real analytic manifold M. Let $s_{j}(j=1, \cdots, n)$ be complex numbers with non-negative real part. Then there exists a maximally overdetermined system \mathcal{M} of linear differential equations such that $u=\prod_{j=1}^{n} f_{j+}^{s_{j}}$ is a solution of system \mathcal{M}.

Corollary 2. Under the same assumptions as in Theorem 1 we can find a locally finite family of locally closed submanifolds $N_{i}(i=1$, $2, \ldots$) of M such that
(1) $\quad S . S . \prod_{j=1}^{n} f_{j+}^{s_{j}} \subset \bigcup_{i} \sqrt{-1} T_{N_{i}}^{*} M \cup\left(\cup_{i} \sqrt{-1} T_{N_{i}}^{*} N_{i}\right)$ holds.

Relation (1) implies further that
S.S. $\prod_{j=1}^{n} f_{j+}^{s_{j}} \subset \cup_{i} \sqrt{-1} S_{N_{i}}^{*} M$.

Theorem 3. Let M be a real analytic manifold and X be its com-

[^0]
[^0]: *) Supported by Miller Institute for Basic Research in Science.
 **) Mathematical Institute, Nagoya University.
 ***) Department of Mathematics, University of California, Berkeley and Research Institute for Mathematical Sciences, Kyoto University.

