52. On Subclasses of Hyponormal Operators

By Masatoshi FuJII and Yasuhiko Nakatsu
Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô Kunugi, m. J. A., April 12, 1975)

1. We shall consider a (bounded linear) operator T acting on a Hilbert space \mathfrak{S}. An operator T is hyponormal if $T T^{*} \leqq T^{*} T$. And T is quasinormal if T commutes with $T^{*} T$. In [2] and [3], Campbell has discussed a subclass of hyponormal operators: An operator T is heminormal if T is hyponormal and $T^{*} T$ commutes with $T T^{*}$. The subclass is called $(B N)^{+}$in [3]. Also he proved

Theorem A. If T is heminormal, then T^{n} is hyponormal for every n.

We shall define a new class of operators to improve Theorem A. For each k, an operator T is k-hyponormal if (1)
$\left(T T^{*}\right)^{k} \leqq\left(T^{*} T\right)^{k}$.
Since $f(\lambda)=\lambda^{\alpha}$ for $0 \leqq \alpha \leqq 1$ is operator monotone, every k-hyponormal operator is hyponormal.

In this note, in § 2 we shall give characterizations of heminormal, quasinormal and k-hyponormal operators by means of an operator equation due to Douglas [4]. In § 3, we shall show that every heminormal operator is n-hyponormal for every n, and for each k, if T is k-hyponormal, then T^{k} is hyponormal.
2. In this section, we shall characterize heminormal, quasinormal and k-hyponormal operators. In [4], Douglas showed the following

Theorem B. Let A and B be operators on \mathfrak{s}. Then $A A^{*} \leqq \lambda^{2} B B^{*}$ for some $\lambda \geqq 0$ if and only if there is an operator C such that $A=B C$.

In the proof of Theorem B, an operator C is constructed as follows; (i) $C^{*}\left(B^{*} x\right)=A^{*} x$ for every $x \in \mathscr{S}$, (ii) C^{*} vanishes on $\operatorname{ran}\left(B^{*}\right)^{\perp}$, and (iii) $\|C\| \leqq \lambda$.

Now we shall give a characterization of heminormal operators.
Theorem 1. An operator T is heminormal if and only if there is a positive contraction P such that

$$
\begin{equation*}
T T^{*}=P T^{*} T \tag{2}
\end{equation*}
$$

Proof. Suppose that T is heminormal. Since $T^{*} T$ commutes with $T T^{*}$, we have $\left(T T^{*}\right)^{2} \leqq\left(T^{*} T\right)^{2}$. It follows from Theorem B that there is an operator C such that $T T^{*}=T^{*} T C$, i.e., $T T^{*}=C^{*} T^{*} T$. So we put $P=C^{*}$, then we have by the above remarks (i) and (ii)

$$
\left(P\left(x_{1}+x_{2}\right), x_{1}+x_{2}\right)=\left(P x_{1}, x_{1}\right) \geqq 0
$$

for every $x_{1} \in \overline{\operatorname{ran}\left(T^{*} T\right)}$ and $x_{2} \in \operatorname{ran}\left(T^{*} T\right)^{\perp}$, that is, $C^{*} \geqq 0$. Since P

