(2)

52. On Subclasses of Hyponormal Operators

By Masatoshi FUJII and Yasuhiko NAKATSU Department of Mathematics, Osaka Kyoiku University

(Comm. by Kinjirô KUNUGI, M. J. A., April 12, 1975)

1. We shall consider a (bounded linear) operator T acting on a Hilbert space \mathfrak{F} . An operator T is hyponormal if $TT^* \leq T^*T$. And T is quasinormal if T commutes with T^*T . In [2] and [3], Campbell has discussed a subclass of hyponormal operators: An operator T is heminormal if T is hyponormal and T^*T commutes with TT^* . The subclass is called $(BN)^+$ in [3]. Also he proved

Theorem A. If T is heminormal, then T^n is hyponormal for every n.

We shall define a new class of operators to improve Theorem A. For each k, an operator T is k-hyponormal if

 $(1) \qquad (TT^*)^k \leq (T^*T)^k.$

Since $f(\lambda) = \lambda^{\alpha}$ for $0 \leq \alpha \leq 1$ is operator monotone, every k-hyponormal operator is hyponormal.

In this note, in § 2 we shall give characterizations of heminormal, quasinormal and k-hyponormal operators by means of an operator equation due to Douglas [4]. In § 3, we shall show that every heminormal operator is n-hyponormal for every n, and for each k, if T is k-hyponormal, then T^{k} is hyponormal.

2. In this section, we shall characterize heminormal, quasinormal and k-hyponormal operators. In [4], Douglas showed the following

Theorem B. Let A and B be operators on §. Then $AA^* \leq \lambda^2 BB^*$ for some $\lambda \geq 0$ if and only if there is an operator C such that A = BC.

In the proof of Theorem B, an operator C is constructed as follows; (i) $C^*(B^*x) = A^*x$ for every $x \in \mathcal{G}$, (ii) C^* vanishes on ran $(B^*)^{\perp}$, and (iii) $\|C\| \leq \lambda$.

Now we shall give a characterization of heminormal operators.

Theorem 1. An operator T is heminormal if and only if there is a positive contraction P such that

 $TT^* = PT^*T.$

Proof. Suppose that T is heminormal. Since T^*T commutes with TT^* , we have $(TT^*)^2 \leq (T^*T)^2$. It follows from Theorem B that there is an operator C such that $TT^* = T^*TC$, i.e., $TT^* = C^*T^*T$. So we put $P = C^*$, then we have by the above remarks (i) and (ii)

 $(P(x_1+x_2), x_1+x_2) = (Px_1, x_1) \ge 0$

for every $x_1 \in \overline{\operatorname{ran}(T^*T)}$ and $x_2 \in \operatorname{ran}(T^*T)^{\perp}$, that is, $C^* \geq 0$. Since P