70. On the Structure of the Graded C-Algebras of Theta Functions

By Shoji KOIZUMI
Department of Mathematics, Tokyo University of Education

(Comm. by Kunihiko Kodaira, M. J. A., May 9, 1975)

Introduction. Let (X, \mathcal{L}) be a polarized abelian variety of dimension n over the complex number field C defined by an abelian variety X and an ample invertible sheaf \mathcal{L} on X. The purpose of this note is to give some information on the graded C-algebra $\mathcal{A}(X, \mathcal{L}) = \bigoplus_{\alpha=0}^{\infty} H^0(X, \mathcal{L}^{\alpha})$. We understand, by the Siegel space \mathcal{H}_n of degree n, the set of all complex symmetric matrices with positive imaginary part. We have, for $z \in \mathcal{H}_n$ and a square matrix e of size n with coefficients in \mathbb{Z} and det $e \neq 0$, a naturally polarized complex torus $C^n/\langle z, e \rangle$ where $\langle z, e \rangle$ is the lattice subgroup of C^n generated by the column vectors of the $(n \times 2n)$ -matrix (z, e). After a suitable choice of $\mathcal{A}(X, \mathcal{L})$ is reduced to that of the graded C-algebra consisting of theta functions on C^n relative to $\langle z, e \rangle$ of certain types.

Besides the above notations \mathcal{H}_n , e, etc., we indicate some definitions and notations which are used throughout this note. C^n etc. denote the set of column n-vectors with components in C etc. Z_+ and N denote the set of all positive integers and $Z_+ \cup \{0\}$, respectively. For $\alpha, \beta \in Z_+$, g.c.d. (α, β) is the greatest common divisor of α and β . In general for e as above (resp. $\alpha \in Z_+$), U_e (resp. U_a) denotes a complete set of representatives of $e^{-1}Z^n$ (resp. $\alpha^{-1}Z^n$) mod e0, which is once for all fixed through in a discussion. When we write e1, which is once for all fixed through in a discussion. When we write e2, which is defined e3, which is a holomorphic function on e4, which is defined by

$$\theta[k](z \mid x) = \sum_{r \in \mathbb{Z}^n} e^{\left\{\frac{1}{2}t(r+k_1)z(r+k_1) + t(r+k_1)(x+k_2)\right\}}.$$

For $\alpha \in \mathbb{N}$, $z \in \mathcal{H}_n$ and $m = \binom{m_1}{m_2} \in \mathbb{R}^{2n}$, an entire function $\xi(x)$ not identically zero on \mathbb{C}^n is called a theta function of type $((z, e), m)_{\alpha}$, if the period relation, for any $\binom{s_1}{s_2} \in \mathbb{Z}^{2n}$,

$$\xi\left(x+(z,e)\binom{s_1}{s_2}\right)\cdot\xi(x)^{-1}=e\left\{\alpha\left(-{}^ts_1x-\frac{1}{2}{}^ts_1zs_1+({}^ts_1,{}^ts_2)\binom{m_1}{m_2}\right)\right\}$$