69. Analytic Functions in a Neighbourhood of Boundary

By Zenjiro Kuramochi
Department of Mathematics Hokkaido University
(Comm. by Kinjirô Kunugi, m. J. A., May 9, 1975)

Let R be an end of a Riemann surface with compact relative boundary ∂R. Let $F_{i}(i=1,2, \cdots)$ be a connected compact set such that $F_{i} \cap F_{j}=0: i \neq j,\left\{F_{i}\right\}$ clusters nowhere in $R+\partial R$ and $R-F\left(F=\Sigma F_{i}\right)$ is connected. We call $R^{\prime}=R-F$ a lacunary end. If there exists a determining sequence $\left\{\mathfrak{B}_{n}(\mathfrak{p})\right\}$ of a boundary component \mathfrak{p} of R such that $\inf _{z \in \partial \mathbb{B}_{n}(\mathfrak{p})} G\left(z, p_{0}\right)>\varepsilon_{0}>0, n=1,2, \cdots$ and $\partial \mathfrak{B}_{n}(\mathfrak{p})$ is a dividing cut, we say F is completely thin at \mathfrak{p}, where $G\left(z, p_{0}\right)$ is a Green's function of R^{\prime}. If there exists an analytic function $w=f(z): z \in R^{\prime}$ such that the spherical area of $f\left(R^{\prime}\right)$ is finite over the w-sphere, we say R^{\prime} satisfies the condition S. If there exists a non const. $w=f(z)$ such that $C\left(f\left(R^{\prime}\right)\right)$ (complementary set of $f\left(R^{\prime}\right)$ with respect to w-sphere) is a set of positive capacity, we say R^{\prime} satisfies the condition B. Then we proved

Theorem ([1]). Let R be an end of a Riemann surface $\in 0_{g}$. If F is completely thin at \mathfrak{p} and $R^{\prime}=R-F$ satisfies the condition S , then the harmonic dimension (the number of minimal points of R over $\mathfrak{p})<\infty$.

In this note we show the above theorem is valid under the condition B instead of the condition S. Since if the spherical area of $f\left(R^{\prime}\right)<\infty$, we can find a neighbourhood $\mathfrak{V}_{n_{0}}(\mathfrak{p})$ of \mathfrak{p} such that $C\left(f\left(\mathfrak{B}_{n_{0}}(\mathfrak{p}) \cap R^{\prime}\right)\right)$ is a set of positive capacity, the result which will be proved is an extension of the theorem.

Let $R \notin 0_{g}$ be a Riemann surface. Let $V(z)$ be a positive harmonic function in $R-F$ such that $V(z)=\infty$ on $F, V(z)$ is singular in $R-F$ and $D(\min (M, V(z))) \leqq M \alpha$ for any $M<\infty, \alpha$ is a const., we call $V(z)$ a generalized Green's function (abbreviated by G.G.), where F is a set of capacity zero. Then

Lemma 1. 1) Let $V(z)$ be a G.G. in R. Then there exists a cons. α such that $D(\min (M, V(z)))=M \alpha$ and $\int_{C_{M}} \frac{\partial}{\partial n} V(z) d s=\alpha: C_{M}$ $=\{z \in R: V(z)=M\}$ for any $M<\infty$. 2). Let $G\left(z, p_{i}\right)(i=1,2, \cdots)$ be a Green's function and $\left\{p_{i}\right\}$ be a sequence such that $G\left(z, p_{i}\right)$ converges to $G\left(z,\left\{p_{i}\right\}\right)$. Then $G(z, p)$ and $G\left(z,\left\{p_{i}\right\}\right)$ are G.G.s such that

$$
\begin{equation*}
\int_{c_{M}} \frac{\partial}{\partial n} G(z, p) d s=2 \pi \quad \text { and } \quad \int_{c_{M}} \frac{\partial}{\partial n} G\left(z,\left\{p_{i}\right\}\right) d s \leqq 2 \pi \tag{1}
\end{equation*}
$$

Let $R^{\prime}=\left\{z \in R: G\left(z, p_{0}\right)>\delta\right\}$ and let \hat{R}^{\prime} be the symmetric image of R^{\prime}

