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In this note, we study the Baire category theorem for a ranked
space of indicator 0 (0 is the first nonfinite ordinal). Throughout
this note, the term "ranked space" will mean a ranked space of indicator

0. Terminologies and notations concerning ranked spaces will be the
same as in [5], in particular, N will denote the set (0, 1, 2,...}, V(p),
W(p), preneighborhoods of p, and V(p, n), W(p, n), those of
rank n of p.

1. The Baire category theorem. For a ranked space, we define
the notion of nowhere dense as follows.

Definition 1. Let (E, cV) be a ranked space. A subset A of E is
said to be nowhere dense in E if, for every V(p)e cV, there exists a
V(q) e cV such that V(q) V(p) and V(q) A

Moreover, as in [2] we define:
Definition 2. For a ranked space (E, cV), a subset A of E is said

to be of first category if it is a countable union of nowhere dense sets.
All other subsets of E are said to be of second category. A subset A
of E is said to be dense in E if, for every V(p) e cv, we have V(p) A
:/=. The ranked space (E, q?) is called a Baire space if, for every
subset A of E which is of first category, the complement E--A is
dense in E.

As is easily seen, if (E, q/) is a ranked space for which we can

topologise E in such a way that the family of all sets belonging to
is a base of neighborhoods, then the notion of Baire category in (E, q?)
coincides with that in the topological space E topologised in this way.

We first prove the following theorem.
Theorem 1. Every complete ranked space is a Baire space.
Already, for a ranked space whose indicator is an arbitrary inac-

cessible limit ordinal, the same theorem has been proved by K. Kunugi

[2], [4] under the assumption that the family cv of preneighborhoods
in the ranked space satisfies the ollowing conditions (B) and (C).

(B) For every V(p), V(p) e q?, there exists a V(p) e ql such that
V()c v() v().

(c) For every V(p) e cV, if q e V(p), then there exists a V(q)

such that V(q) c V(p).
Theorem 1 asserts that if we define nowhere dense as in Definition


