88. The Baire Category Theorem in Ranked Spaces

By Shizu NAKANISHI

University of Osaka Prefecture

(Comm. by Kinjirô KUNUGI, M. J. A., June 3, 1975)

In this note, we study the Baire category theorem for a ranked space of indicator ω_0 (ω_0 is the first nonfinite ordinal). Throughout this note, the term "ranked space" will mean a ranked space of indicator ω_0 . Terminologies and notations concerning ranked spaces will be the same as in [5], in particular, N will denote the set $\{0, 1, 2, \dots\}, V(p), W(p), \dots$ preneighborhoods of p, and $V(p, n), W(p, n), \dots$ those of rank n of p.

1. The Baire category theorem. For a ranked space, we define the notion of nowhere dense as follows.

Definition 1. Let (E, \mathbb{CV}) be a ranked space. A subset A of E is said to be *nowhere dense* in E if, for every $V(p) \in \mathbb{CV}$, there exists a $V(q) \in \mathbb{CV}$ such that $V(q) \subset V(p)$ and $V(q) \cap A = \phi$.

Moreover, as in [2] we define:

Definition 2. For a ranked space (E, \mathcal{CV}) , a subset A of E is said to be of *first category* if it is a countable union of nowhere dense sets. All other subsets of E are said to be of *second category*. A subset Aof E is said to be *dense* in E if, for every $V(p) \in \mathcal{CV}$, we have $V(p) \cap A$ $\neq \phi$. The ranked space (E, \mathcal{CV}) is called a *Baire space* if, for every subset A of E which is of first category, the complement E-A is dense in E.

As is easily seen, if (E, \mathcal{CV}) is a ranked space for which we can topologise E in such a way that the family of all sets belonging to \mathcal{CV} is a base of neighborhoods, then the notion of Baire category in (E, \mathcal{CV}) coincides with that in the topological space E topologised in this way.

We first prove the following theorem.

Theorem 1. Every complete ranked space is a Baire space.

Already, for a ranked space whose indicator is an arbitrary inaccessible limit ordinal, the same theorem has been proved by K. Kunugi [2], [4] under the assumption that the family \mathcal{CV} of preneighborhoods in the ranked space satisfies the following conditions (B) and (C).

(B) For every $V_1(p)$, $V_2(p) \in \mathcal{CV}$, there exists a $V_3(p) \in \mathcal{CV}$ such that $V_3(p) \subset V_1(p) \cap V_2(p)$.

(C) For every $V(p) \in \mathbb{CV}$, if $q \in V(p)$, then there exists a $V(q) \in \mathbb{CV}$ such that $V(q) \subset V(p)$.

Theorem 1 asserts that if we define nowhere dense as in Definition