84. Another Form of the Whitehead Theorem in Shape Theory

By Kiiti Morita
Department of Mathematics, Tokyo University of Education
(Comm. by Kenjiro ShodA, m. J. A., June 3, 1975)

1. Introduction. In a previous paper [5] we have established the following theorem which is a shape-theoretical analogue of the classical Whitehead theorem in homotopy theory of $C W$ complexes.

Theorem 1.1. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a shape morphism of pointed connected topological spaces of finite dimension. If the induced morphisms $\pi_{k}(f): \pi_{k}\left\{\left(X, x_{0}\right)\right\} \rightarrow \pi_{k}\left\{\left(Y, y_{0}\right)\right\}$ of homotopy pro-groups ${ }^{11}$ is an isomorphism for $1 \leqq k<n$ and an epimorphism for $k=n$ where n $=\max (1+\operatorname{dim} X, \operatorname{dim} Y)$, then f is a shape equivalence.

The purpose of this note is to prove the following theorem, which corresponds to another form of the Whitehead theorem in homotopy theory of $C W$ complexes; Theorem 1.2 was announced in a previous paper [5].

Theorem 1.2. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be the same as in Theorem 1.1. If the induced morphism $\pi_{k}(f): \pi_{k}\left\{\left(X, x_{0}\right)\right\} \rightarrow \pi_{k}\left\{\left(Y, y_{0}\right)\right\}$ of homotopy pro-groups is an isomorphism for $1 \leqq k \leqq n$ where $n=\max (\operatorname{dim} X, \operatorname{dim} Y)$, then f is a shape equivalence.

Furthermore, the following theorem holds.
Theorem 1.3. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a shape morphism of pointed connected topological spaces such that the induced morphism

$$
\pi_{k}(f): \pi_{k}\left\{\left(X, x_{0}\right)\right\} \longrightarrow \pi_{k}\left\{\left(Y, y_{0}\right)\right\}
$$

of homotopy pro-groups is an isomorphism for $1 \leqq k \leqq n$. If $\operatorname{dim} Y \leqq n$, then there exists a unique shape morphism $g:\left(Y, y_{0}\right) \rightarrow\left(X, x_{0}\right)$ such that $f g=1$.
2. Preliminaries. Let $f:\left(X, x_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a shape morphism of pointed connected topological spaces.

As in [5], without loss of generality we may assume that $\left\{\left(X_{\lambda}, x_{0 \lambda}\right)\right.$, [$\left.\left.p_{2 \mu}\right], \Lambda\right\}$ and $\left\{\left(Y_{\lambda}, y_{02}\right),\left[q_{2 x^{2}}\right], \Lambda\right\}$ are inverse systems in \mathfrak{B}_{0} which are isomorphic to the Čech systems of (X, x_{0}) and (Y, y_{0}) respectively in pro $\left(\mathfrak{W}_{0}\right)$, where \mathfrak{W}_{0} is the homotopy category of pointed connected $C W$ complexes, and that f is an equivalence class containing a special system map

$$
\left\{1, f_{\lambda}, \Lambda\right\}:\left\{\left(X_{\lambda}, x_{0 \lambda}\right),\left[p_{\lambda \lambda^{\prime}}\right], \Lambda\right\} \longrightarrow\left\{\left(Y_{\lambda}, y_{0 \lambda}\right),\left[q_{\lambda \lambda}\right], \Lambda\right\}
$$

[^0]
[^0]: 1) For the definition of the k-th homotopy pro-group of a pointed topological space (X, x_{0}), see [5]. Here we denote it by $\pi_{k}\left\{\left(X, x_{0}\right)\right\}$ (cf. [2]).
