76. Continuity of Homomorphism of Lie Algebras of Vector Fields

By Kazuo Masuda
Department of Mathematics, Tokyo Institute of Technology
(Comm. by Kunihiko Kodaira, M. J. A., June 3, 1975)

1. Introduction. For any smooth manifold M, let $\mathcal{A}(M)$ be the (infinite dimensional) Lie algebra formed by all the smooth vector fields on M under the usual bracket operation and Diff (M) the group formed by all the diffeomorphisms of M. In [3] (Theorem 1.3.2) H. Omori proved that if M and N are compact and $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ is a Lie algebra homomorphism which is continuous in the C^{∞}-topology, then φ induces a local homomorphism $\operatorname{Diff}(M) \rightarrow \operatorname{Diff}(N)$ as in the finite dimensional case. In this theorem the assumption of the continuity can be omitted, i.e. we can prove the following

Theorem. Any homomorphism $\varphi: \mathcal{A}(M) \rightarrow \mathcal{A}(N)$ is continuous in the C^{∞}-topology.

Since it can be shown that if φ is non-trivial and N is compact then M is also compact, we have

Corollary. If N is compact then φ induces a local homomorphism Diff (M) \rightarrow Diff (N).

It is known that if φ is an isomorphism, then M and N are diffeomorphic, in other words, the Lie algebra $\mathcal{A}(M)$ determines the manifold M ([4], for non-compact case [2]). In case of the general homomorphism, the relation of M and N is given as follows. For any positive integer l, let M_{l} be a smooth manifold formed by all the sets of distinct l points of M and put $N_{0}=\{q \in N \mid \varphi(X)$ vanishes at q for any $X \in \mathcal{A}(M)\}$. Then N is a finite disjoint union of subsets $N_{0}, N_{1}, \cdots, N_{k}$ and if N is compact then each N_{l} is a (topological) fibre bundle over M_{l}. This bundle is closely related to the jet bundle of the tangent bundle of M^{ι} $=M \times \cdots \times M$. (It seems that $N_{0}=\phi$ and N_{l} is a smooth bundle whose fibre is a smooth manifold with corner.) The details will appear elsewhere.
2. Sketch of the proof of Theorem. Recall that the C^{∞} topology of $\mathcal{A}(M)$ is given by seminorms $|\cdot|_{U, r}$ defined as follows. Let U be a relatively compact open set of M and $(x)=\left(x^{1}, \cdots, x^{n}\right)$ a coordinate system on some neighborhood of \bar{U}. Then for any $X \in \mathcal{A}(M)$ with $X=\sum f^{i}(x) \partial_{x^{i}}$ on U, we put

$$
|X|_{U, r}=\sup _{x \in U,|\alpha| \leq r, i \leqq n}\left|D^{\alpha} f^{i}(x)\right|
$$

