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1. Introduction. For any smooth manifold M, let (M) be the
(infinite dimensional) Lie algebra formed by all the smooth vector fields
on M under the usual bracket operation and Diff (M) the group ormed
by all the diffeomorphisms o M. In [3] (Theorem 1.3.2) H. Omori
proved that if M and N are compact and " yT(M)(N) is a Lie
algebra homomorphism which is continuous in the C-topology, then

induces a local homomorphism Diff (M)-Diff (N) as in the finite
dimensional case. In this theorem the assumption o the continuity
can be omitted, i.e. we can prove the following

Theorem. Any homomorphism " (M)(N) is continuous in
the C-topology.

Since it can be shown that if is non-trivial and N is compact then
M is also compact, we have

Corollary. If N is compact then induces a local homomorphism
Diff (M)-Diff (N).

It is known that if o is an isomorphism, then M and N are diffeo-
morphic, in other words, the Lie algebra (M) determines the manifold
M ([4], or non-compact case [2]). In case of the general homomor-
phism, the relation o M and N is given as ollows. For any positive
integer l, let M be a smooth manifold formed by all the sets of distinct
points o M and put No--{q e N I(X) vanishes at q or any X e )(M)}.
Then N is a finite disjoint unio of subsets No, N, ..., N and i N is
compact then each N is a (topological) fibre bundle over M. This
bundle is closely related to the jet bundle of the tangent bundle o M
=M... M. (It seems that N0= and N is a smooth bundle whose
fibre is a smooth manifold with corner.) The details will appear else-
where.

2. Sketch of the proof of Theorem. Recall that the C-topology of (M) is given by seminorms I. Iv, defined as ollows. Let
U be a relatively compact opea set of M and (x)=(xX,..., x) a coordi-
nate system on some neighborhood of U. Then or any X e (M) with
X=Y, f(x)x, on U, we put

[X],= sup ID"f(x)l
x,[a[_r,i_n


