548 Proc. Japan Acad.,51 (1975) [Vol. 51,
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(Comm. by Kinjird KUNUGI, M. J. A., Sept. 12, 1975)

1. Introduction. Previously, in [1] we have proved the following
result: Let {p,(x; O)} and {2,0)}, 7=1,2,.--, be a complete system
of mormalized eigenfunctions and eigenvalues, respectively, of the
Schrodinger eigenvalue problem in T', T' being o torus, with t con-
sidered as a parameter:
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where w(x, t) is a real function belonging to C*(T* X RY). Then we have
the asymptotic expansion :
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where P; are uniquely determined and can be calculated explicitly in
terms of the function u and its partial derivatives in x, of order
<2(i—1). If u=wu(x,t) evolves according to the equation
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where M is an arbitrary fixed positive integer and fi(t) are arbitrary
smooth function of t, then the eigenvalues 2,(t) of the associated eigen-
value problem (1.1) are constants in t and every P;( - ) appeared in
(1.2) is the conserved density of (1.3).

In this note, two extensions of the above result are considered.
One is to extend it into # X » matrix form. The other is to extend it
into the case of many space variables.

2. nXn matrix form. Let U(z,t) be a nxXn Hermitian matrix
function whose elements belong to C~(T'x R'). Below, we denote the
set of such matrix functions by C=(T'xR"). Consider the eigenvalue
problem for the following matrix differential equation with ¢ considered
as a parameter:
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