115. On almost Primes in Arithmetic Progressions. II

By Yoichi MOTOHASHI

Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo

(Comm. by Kunihiko Kodaira, M. J. A., Sept. 12, 1975)

 \S 1. Let P_r denote as usual a number which has at most r prime factors counting multiplicities. In our previous paper [2] we have proved that there are numbers such that

$$P_2 \ll k^{11/10}$$
, $P_2 \equiv l \pmod{k}$, $P_3 \ll k(\log k)^{70}$, $P_3 \equiv l \pmod{k}$,

for almost all reduced residue classes $l \pmod k$. The purpose of the present note is to study briefly the dual problem in which the reduced residue class l is fixed and the modulus k runs over certain interval. We prove

Theorem. Let l be a fixed non-zero integer. Then there is a $P_{\rm 3}$ such that

$$P_3 \ll k(\log k)^{70}$$
, $P_3 \equiv l \pmod{k}$,

for almost all k, (k, l) = 1.

Our proof depends on two recent results: one from [2] which concerns to a compact presentation of the sieve procedure of Jurkat and Richert, and the other from [1] which is a simple variant of the dispersion method of Linnik. These are embodied in lemmas of the next paragraph.

Notations. In what follows we always have (k, l) = 1, and we may assume that l is a positive integer. x is a positive and sufficiently large parameter. $\varphi(n)$ denotes the Euler function, and d(n), $d_{5}(n)$ are divisor functions. (n, m) and [n, m] denote the greatest common divisor and the least common multiple between n and m, respectively.

§ 2. Let $z \ge 2$ be arbitrary, and let

$$P_k(z) = \prod_{\substack{p \leq z \ p \nmid k}} p, \qquad \Gamma_k(z) = \prod_{\substack{p \leq z \ p \nmid k}} \left(1 - \frac{1}{p}\right),$$

p being generally a prime number. We introduce another parameter w such that $z \le w$, and we put, for any non-negative constant ζ ,

$$V_{\zeta}(x\,;\,k,l\,;\,z,w) = \sum_{\substack{n \equiv l \pmod{k} \\ (n,l) = 1 \\ (n,P_{k}(z)) = 1}} \left\{ 1 - \zeta \sum_{\substack{p \mid n \\ p \mid kl \\ z \leq p < w}} \left(1 - \frac{\log p}{\log w} \right) \right\},$$

$$S(x\,;\,k,l\,;\,z,w) = \sum_{\substack{n \equiv l \pmod{k} \\ n \leq x \\ (n,l) = 1}} \sum_{\substack{p^{2} \mid n \\ p \mid kl \\ z \leq p < w}} 1.$$