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115. On almost Primes in Arithmetic Progressions. 11
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§ 1. Let P, denote as usual a number which has at most » prime
factors counting multiplicities. In our previous paper [2] we have
proved that there are numbers such that

P, k1, P,=1 (mod k),

P.« k(og k)™, P,=1 (mod k),
for almost all reduced residue classes [ (mod k). The purpose of the
present note is to study briefly the dual problem in which the reduced
residue class [ is fixed and the modulus % runs over certain interval.
We prove

Theorem. Letl be a fixed non-zero integer. Then there is a P,
such that

P.< k(log k)™, P.=1 (mod k),
for almost all k, (k,)=1.

Our proof depends on two recent results: one from [2] which
concerns to a compact presentation of the sieve procedure of Jurkat
and Richert, and the other from [1] which is a simple variant of the
dispersion method of Linnik. These are embodied in lemmas of the
next paragraph.

Notations. In what follows we always have (k, )=1, and we may
assume that I is a positive integer. =z is a positive and sufficiently
large parameter. ¢(n) denotes the Euler function, and d(n), d,(n) are
divisor functions. (n,m) and [n,m] denote the greatest common di-
visor and the least common multiple between » and m, respectively.

§2. Let 2=2 be arbitrary, and let
Pd=Tlp, Te@=I] (1_1),
sz P

sz
P\k 1343
p being generally a prime number. We introduce another parameter

w such that z<w, and we put, for any non-negative constant ¢,

Vs kLz,w)= > J1—¢ > (1--28P )|,
n=t (inod k) pTn log w

nsx ikl

(n,1)=1 z2sp<w

(n,Pr(2)) =1

S@; kLiz,w= > > 1L
n=l (mod k) p2in

nsx VKL

(n,l)=1 zsp<w



