# 115. On almost Primes in Arithmetic Progressions. II 

By Yoichi Motohashi<br>Department of Mathematics, College of Science and Engineering, Nihon University, Tokyo<br>(Comm. by Kunihiko Kodaira, m. J. A., Sept. 12, 1975)

§ 1. Let $\mathrm{P}_{r}$ denote as usual a number which has at most $r$ prime factors counting multiplicities. In our previous paper [2] we have proved that there are numbers such that

$$
\begin{array}{ll}
\mathrm{P}_{2} \ll k^{11 / 10}, & \mathrm{P}_{2} \equiv l(\bmod k), \\
\mathrm{P}_{3}<k(\log k)^{\tau 0}, & \mathrm{P}_{3} \equiv l(\bmod k),
\end{array}
$$

for almost all reduced residue classes $l(\bmod k)$. The purpose of the present note is to study briefly the dual problem in which the reduced residue class $l$ is fixed and the modulus $k$ runs over certain interval. We prove

Theorem. Let l be a fixed non-zero integer. Then there is a $\mathrm{P}_{3}$ such that

$$
\mathrm{P}_{3} \ll k(\log k)^{70}, \quad \mathrm{P}_{3} \equiv l(\bmod k),
$$

for almost all $k,(k, l)=1$.
Our proof depends on two recent results: one from [2] which concerns to a compact presentation of the sieve procedure of Jurkat and Richert, and the other from [1] which is a simple variant of the dispersion method of Linnik. These are embodied in lemmas of the next paragraph.

Notations. In what follows we always have $(k, l)=1$, and we may assume that $l$ is a positive integer. $x$ is a positive and sufficiently large parameter. $\varphi(n)$ denotes the Euler function, and d $(n), \mathrm{d}_{5}(n)$ are divisor functions. ( $n, m$ ) and $[n, m]$ denote the greatest common divisor and the least common multiple between $n$ and $m$, respectively.
§ 2. Let $z \geqq 2$ be arbitrary, and let

$$
\mathrm{P}_{k}(z)=\prod_{\substack{p \leq z \\ p \nmid k}} p, \quad \Gamma_{k}(z)=\prod_{\substack{p \leq z \\ p \nmid k}}\left(1-\frac{1}{p}\right),
$$

$p$ being generally a prime number. We introduce another parameter $w$ such that $z \leqq w$, and we put, for any non-negative constant $\zeta$,

