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Let D denote a unique factorization domain (UFD) and let K de-
note its quotient field. In [1] Iwamoto investigated the D-submodules
of K where D was given an additional property. This property was
stated in [1] as “every principal ideal of D is maximal” which is clearly
a misprint. However, if this property is stated as “every principal
prime ideal sf D is maximal” then it is easy to see that D is a principal
ideal domain (PID) and that, with this property, all of the proofs
leading to the description of the D-submodules of K in [1] are correct.
In this note it will be shown that the description of the D-submodules
of K given in [1] actually characterizes principal ideal domains and so
no more general property than PID can be used in [1].

Let f denote a mapping from P, the set of all prime elements of
D, into Z U {— oo} such that f(p)>0 for only a finite number of elements
p e P and let F denote the set of all such mappings. If we let M(Y)
={x e K|V ,(®)>f(p) for all pe P} where V, is the p-valuation on K
then it is easy to see that M(f) is a D-module for all feF. 1In [1] it
is shown, in view of the comments above, that if D is a PID, then
every D-submodule of K is of the form M(f) for some feF.

Theorem. Let D denote a UFD. Ewvery D-submodule of K is of
the form M(f) for some f e F if and only if D is a PID.

Proof. The “if” direction was proved in [1]. Suppose that every
D-submodule of K is of the form M(f) for some feF. Let p, and p,
be two prime elements in D (if there are fewer than two primes in D,
the theorem is obviously true). Consider N={d,/p,+d,/p.|d,, d, € D}.
Clearly N is a D-submodule of K. Then, by assumption, N=M(f)
for some f ¢ F. Since1l/p, is an element of N, f(p,))< —1, and similarly
Ff(®)<—1. Also, since 1e N, f(p)<O0 for all primes p. This implies
that 1/pp,e N. Therefore, 1/p,p,=d,/p,+d,/p, for some d, and d, in
D. Consequently, 1=d,p,+d,p, and so p, and p, are not in the same
maximal ideal. Hence every maximal ideal of D contains exactly one
prime element which implies that D is a PID.

Note that the proof of the theorem shows that only those D-
submodules of K containing D need be considered. Hence a UFD D



