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The aim of this article is to give a new type of conformal map-
pings of plane regions bounded by finitely many analytic Jordan curves.
This is achieved by making use of a generalized Riemann-Roch theorem
shown in [8]. Also we shall mention about some immediate generali-
zations.

As is well-known, every plane region is conformally equivalent to
a parallel slit region. This theorem was carried over the case of
Riemann surfaces with positive finite genus by Kusunoki [38]. Other
types of canonical regions can be found in [1], [4]-[6] and in Koebe’s
classical works (see e.g. [2]). The image region with which we shall
deal now is of a different sort from those; it is a finite sheeted covering
surface of the extended plane whose boundary consists of slits lying
over a fixed straight line.

1. Let R be an arbitrary open Riemann surface of genus
9 (£ + ) and 9R its Kerékjart6-Stoilow ideal boundary. Denote by
P a fixed regular partition of 9R such that P:9R=aUpBUy, where
¢S aZdR. We denote by Q the canonical partition of 9R (see[1]). Let
4, and 47 be two behavior spaces on R which are dual to each other
with respect to R (cf. [7]). Suppose that a (P)4,-divisor V=V (P, 4,;
B,m) and a (@) Ai-divisor Vo=V(Q, 4;; r,n) are given. Consider the
ordered pair 4=(Vp, Vy) and set 1/4=4""'=(V,, Vp). The difference
n—m of dimensions is called the index of 4 and is denoted by ind 4.
This definition is different from the preceding one ([8], p.15). Because
of this, in the present case we may not distinguish two functions with
a constant difference. We set S(U/H={f|({@) f is a single-valued
analytic function on R, (ii) df is a multiple of Vg, (iii) Res, fr=0 for
every t € Vp.} and 9(U)={w|w is a regular analytic differential on R
which is a multiple of V, and satisfies Res, so=0 for every dse V,.}.
(As for the definitions of Res, fr ete., see [8].)

Now our Riemann-Roch theorem reads:

Theorem 1 ([8]). For surfaces of finite genus g,

dim S(1/4) —dim 9(4)=ind 4—2g+2.

One can find a more general form of the Riemann-Roch theorem
in [8].

2. In this section we shall show the following theorem as an ap-



