144. Notes on the Existence of Certain Slit Mappings

By Masakazu SHIBA Kyoto University

(Comm. by Kinjirô KUNUGI, M. J. A., Oct. 13, 1975)

The aim of this article is to give a new type of conformal mappings of plane regions bounded by finitely many analytic Jordan curves. This is achieved by making use of a generalized Riemann-Roch theorem shown in [8]. Also we shall mention about some immediate generalizations.

As is well-known, every plane region is conformally equivalent to a parallel slit region. This theorem was carried over the case of Riemann surfaces with positive finite genus by Kusunoki [3]. Other types of canonical regions can be found in [1], [4]–[6] and in Koebe's classical works (see e.g. [2]). The image region with which we shall deal now is of a different sort from those; it is a finite sheeted covering surface of the extended plane whose boundary consists of slits lying over a fixed straight line.

1. Let R be an arbitrary open Riemann surface of genus $g (\leq +\infty)$ and ∂R its Kerékjártó-Stoïlow ideal boundary. Denote by P a fixed regular partition of ∂R such that $P: \partial R = \alpha \cup \beta \cup \gamma$, where $\phi \subseteq \alpha \subseteq \partial R$. We denote by Q the canonical partition of ∂R (see [1]). Let Λ_0 and Λ'_0 be two behavior spaces on R which are dual to each other with respect to **R** (cf. [7]). Suppose that a $(P)\Lambda_0$ -divisor $V_P = V(P, \Lambda_0;$ β, m) and a $(Q)\Lambda'_0$ -divisor $V_Q = V(Q, \Lambda'_0; \gamma, n)$ are given. Consider the ordered pair $\Delta = (V_P, V_Q)$ and set $1/\Delta = \Delta^{-1} = (V_Q, V_P)$. The difference n-m of dimensions is called the index of Δ and is denoted by ind Δ . This definition is different from the preceding one ([8], p.15). Because of this, in the present case we may not distinguish two functions with a constant difference. We set $S(1/d) = \{f | (i) f \text{ is a single-valued}\}$ analytic function on R, (ii) df is a multiple of V_Q , (iii) $\Re e_{\mathfrak{F}} f\tau = 0$ for every $\tau \in V_{P}$, and $\mathcal{D}(\varDelta) = \{\omega \mid \omega \text{ is a regular analytic differential on } R$ which is a multiple of V_P and satisfies $\Re e_{\mathcal{F}_r} s\omega = 0$ for every $ds \in V_Q$. (As for the definitions of $\Re e \hat{s}_{\theta} f \tau$ etc., see [8].)

Now our Riemann-Roch theorem reads:

Theorem 1 ([8]). For surfaces of finite genus g,

 $\dim \mathcal{S}(1/\Delta) - \dim \mathcal{D}(\Delta) = \operatorname{ind} \Delta - 2g + 2.$

One can find a more general form of the Riemann-Roch theorem in [8].

2. In this section we shall show the following theorem as an ap-