173. Weight Functions of the Class (A_∞) and Quasi-conformal Mappings

By Akihito UCHIYAMA
Department of Mathematics, Tokyo Metropolitan University

(Comm. by Kôsaku Yosida, M. J. A., Nov. 12, 1975)

§ 1. Introduction. In the following we use G as an open subset of R^n , Q (or P) as a cube with sides parallel to coordinates axis, E as a measurable set and $\chi(E)$ as the characteristic function of E. When f is a measurable function defined on R^n , sup $\left\{\left(|Q|^{-1}\int_Q|f(y)|^p\,dy\right)^{1/p}|Q\ni x\right\}$ will be denoted by $M_p(f)(x)$. If $\varphi\colon G_1\to G_2$ is totally differentiable at x, the Jacobian matrix of φ at x will be denoted by $\Phi(x)$ and $|\det \Phi(x)|$ by $J_{\varphi}(x)$. For ACL (absolutely continuous on lines) and BMO (bounded mean oscillation) see Reimann [4].

In Reimann [4] he proved the following theorem.

Theorem A. Let φ be a homeomorphism of R^n onto itself, ACL and totally differentiable a.e. and assume that $|\varphi(\cdot)|$ and $|\varphi^{-1}(\cdot)|$ are absolutely continuous set functions in R^n . Then φ is quasiconformal iff there exists C>0 such that $||f\circ\varphi^{-1}||_*\leqslant C||f||_*$ for any BMO function f, where $||\cdot||_*$ means the BMO norm.

Using his idea, some other characterizations of quasiconformal mappings are possible. Theorem 1 and Corollary 1 are characterizations by Hardy-Littlewoods' maximal functions and Theorem 2 is a characterization by some kind of measures.

§ 2. The Hardy-Littlewoods' maximal functions and quasiconformal mappings

Theorem 1. Let φ be a homeomorphism of G_1 onto G_2 , ACL and totally differentiable a.e. Then the followings are equivalent.

- (I) φ is a quasiconformal mapping.
- (II) There exist C>0 and $\infty>p>1$ satisfying the following conditions:

For $\forall x \in G_1$ there exists r(x) > 0 such that

$$\sup \left\{ |Q|^{-1} \int_{Q} f(y) dy \, | \operatorname{diam} Q < r(x), Q \ni x \right\} \\
\leqslant C \sup \left\{ \left(|Q|^{-1} \int_{Q} (f \circ \varphi^{-1}(y))^{p} dy \right)^{1/p} | Q \ni \varphi(x), Q \subset G_{2} \right\}, \\
\sup \left\{ |Q|^{-1} \int_{Q} f \circ \varphi^{-1}(y) dy \, | \operatorname{diam} Q < r(x), Q \ni \varphi(x) \right\} \\
\leqslant C \sup \left\{ \left(|Q|^{-1} \int_{Q} f(y)^{p} dy \right)^{1/p} | Q \ni x, Q \subset G_{1} \right\}$$
(2)